Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm
The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and ap...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2009-11, Vol.36 (9), p.11836-11843 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11843 |
---|---|
container_issue | 9 |
container_start_page | 11836 |
container_title | Expert systems with applications |
container_volume | 36 |
creator | Hsu, Chun-Fei Chung, Chao-Ming Lin, Chih-Min Hsu, Chia-Yu |
description | The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods. |
doi_str_mv | 10.1016/j.eswa.2009.04.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34570349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409003522</els_id><sourcerecordid>34570349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5g8sSXYsRPHEksV8VEJBEgwW457aV0lcbDdVv33JCoz0w33Pqf3HoRuKUkpocX9NoVw0GlGiEwJT0lGztCMloIlhZDsHM2IzEXCqeCX6CqELSFUECJm6HOx0kO0e8DV26LCPey8brFxffSuxa7BZqNdtAaHY4jQBXywcYM1_lgm8TgAbkH73vZrrNu18-Ouu0YXjW4D3PzNOfp-evyqXpLX9-dltXhNDGM0JiYfm-VZycoia7Ky4bxuGKeaS64pE7kWWT61ZE2ZN1JmNVDJapDa0LwuGLA5ujvdHbz72UGIqrPBQNvqHtwuKMZzQRiXYzA7BY13IXho1OBtp_1RUaIme2qrJntqsqcIV6O9EXo4QTC-sLfgVTAWegMr68FEtXL2P_wXdhh3eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34570349</pqid></control><display><type>article</type><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</creator><creatorcontrib>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</creatorcontrib><description>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.04.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive control ; Chaotic system ; CMAC ; Uniformly ultimately bounded</subject><ispartof>Expert systems with applications, 2009-11, Vol.36 (9), p.11836-11843</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</citedby><cites>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.04.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chung, Chao-Ming</creatorcontrib><creatorcontrib>Lin, Chih-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Yu</creatorcontrib><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><title>Expert systems with applications</title><description>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</description><subject>Adaptive control</subject><subject>Chaotic system</subject><subject>CMAC</subject><subject>Uniformly ultimately bounded</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5g8sSXYsRPHEksV8VEJBEgwW457aV0lcbDdVv33JCoz0w33Pqf3HoRuKUkpocX9NoVw0GlGiEwJT0lGztCMloIlhZDsHM2IzEXCqeCX6CqELSFUECJm6HOx0kO0e8DV26LCPey8brFxffSuxa7BZqNdtAaHY4jQBXywcYM1_lgm8TgAbkH73vZrrNu18-Ouu0YXjW4D3PzNOfp-evyqXpLX9-dltXhNDGM0JiYfm-VZycoia7Ky4bxuGKeaS64pE7kWWT61ZE2ZN1JmNVDJapDa0LwuGLA5ujvdHbz72UGIqrPBQNvqHtwuKMZzQRiXYzA7BY13IXho1OBtp_1RUaIme2qrJntqsqcIV6O9EXo4QTC-sLfgVTAWegMr68FEtXL2P_wXdhh3eQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Hsu, Chun-Fei</creator><creator>Chung, Chao-Ming</creator><creator>Lin, Chih-Min</creator><creator>Hsu, Chia-Yu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><author>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Chaotic system</topic><topic>CMAC</topic><topic>Uniformly ultimately bounded</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chung, Chao-Ming</creatorcontrib><creatorcontrib>Lin, Chih-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chun-Fei</au><au>Chung, Chao-Ming</au><au>Lin, Chih-Min</au><au>Hsu, Chia-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>11836</spage><epage>11843</epage><pages>11836-11843</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.04.020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2009-11, Vol.36 (9), p.11836-11843 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_34570349 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive control Chaotic system CMAC Uniformly ultimately bounded |
title | Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20CMAC%20neural%20control%20of%20chaotic%20systems%20with%20a%20PI-type%20learning%20algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Hsu,%20Chun-Fei&rft.date=2009-11-01&rft.volume=36&rft.issue=9&rft.spage=11836&rft.epage=11843&rft.pages=11836-11843&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.04.020&rft_dat=%3Cproquest_cross%3E34570349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34570349&rft_id=info:pmid/&rft_els_id=S0957417409003522&rfr_iscdi=true |