Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm

The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2009-11, Vol.36 (9), p.11836-11843
Hauptverfasser: Hsu, Chun-Fei, Chung, Chao-Ming, Lin, Chih-Min, Hsu, Chia-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11843
container_issue 9
container_start_page 11836
container_title Expert systems with applications
container_volume 36
creator Hsu, Chun-Fei
Chung, Chao-Ming
Lin, Chih-Min
Hsu, Chia-Yu
description The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.
doi_str_mv 10.1016/j.eswa.2009.04.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34570349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409003522</els_id><sourcerecordid>34570349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5g8sSXYsRPHEksV8VEJBEgwW457aV0lcbDdVv33JCoz0w33Pqf3HoRuKUkpocX9NoVw0GlGiEwJT0lGztCMloIlhZDsHM2IzEXCqeCX6CqELSFUECJm6HOx0kO0e8DV26LCPey8brFxffSuxa7BZqNdtAaHY4jQBXywcYM1_lgm8TgAbkH73vZrrNu18-Ouu0YXjW4D3PzNOfp-evyqXpLX9-dltXhNDGM0JiYfm-VZycoia7Ky4bxuGKeaS64pE7kWWT61ZE2ZN1JmNVDJapDa0LwuGLA5ujvdHbz72UGIqrPBQNvqHtwuKMZzQRiXYzA7BY13IXho1OBtp_1RUaIme2qrJntqsqcIV6O9EXo4QTC-sLfgVTAWegMr68FEtXL2P_wXdhh3eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34570349</pqid></control><display><type>article</type><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</creator><creatorcontrib>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</creatorcontrib><description>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.04.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive control ; Chaotic system ; CMAC ; Uniformly ultimately bounded</subject><ispartof>Expert systems with applications, 2009-11, Vol.36 (9), p.11836-11843</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</citedby><cites>FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.04.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chung, Chao-Ming</creatorcontrib><creatorcontrib>Lin, Chih-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Yu</creatorcontrib><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><title>Expert systems with applications</title><description>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</description><subject>Adaptive control</subject><subject>Chaotic system</subject><subject>CMAC</subject><subject>Uniformly ultimately bounded</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5g8sSXYsRPHEksV8VEJBEgwW457aV0lcbDdVv33JCoz0w33Pqf3HoRuKUkpocX9NoVw0GlGiEwJT0lGztCMloIlhZDsHM2IzEXCqeCX6CqELSFUECJm6HOx0kO0e8DV26LCPey8brFxffSuxa7BZqNdtAaHY4jQBXywcYM1_lgm8TgAbkH73vZrrNu18-Ouu0YXjW4D3PzNOfp-evyqXpLX9-dltXhNDGM0JiYfm-VZycoia7Ky4bxuGKeaS64pE7kWWT61ZE2ZN1JmNVDJapDa0LwuGLA5ujvdHbz72UGIqrPBQNvqHtwuKMZzQRiXYzA7BY13IXho1OBtp_1RUaIme2qrJntqsqcIV6O9EXo4QTC-sLfgVTAWegMr68FEtXL2P_wXdhh3eQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Hsu, Chun-Fei</creator><creator>Chung, Chao-Ming</creator><creator>Lin, Chih-Min</creator><creator>Hsu, Chia-Yu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091101</creationdate><title>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</title><author>Hsu, Chun-Fei ; Chung, Chao-Ming ; Lin, Chih-Min ; Hsu, Chia-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c56795283862f28f44bf341a494a1375a72500173f85f992be193be9ac15b63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Chaotic system</topic><topic>CMAC</topic><topic>Uniformly ultimately bounded</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chun-Fei</creatorcontrib><creatorcontrib>Chung, Chao-Ming</creatorcontrib><creatorcontrib>Lin, Chih-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Yu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chun-Fei</au><au>Chung, Chao-Ming</au><au>Lin, Chih-Min</au><au>Hsu, Chia-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>11836</spage><epage>11843</epage><pages>11836-11843</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.04.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2009-11, Vol.36 (9), p.11836-11843
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_34570349
source Elsevier ScienceDirect Journals
subjects Adaptive control
Chaotic system
CMAC
Uniformly ultimately bounded
title Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20CMAC%20neural%20control%20of%20chaotic%20systems%20with%20a%20PI-type%20learning%20algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Hsu,%20Chun-Fei&rft.date=2009-11-01&rft.volume=36&rft.issue=9&rft.spage=11836&rft.epage=11843&rft.pages=11836-11843&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.04.020&rft_dat=%3Cproquest_cross%3E34570349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34570349&rft_id=info:pmid/&rft_els_id=S0957417409003522&rfr_iscdi=true