Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2009-04, Vol.13 (2), p.398-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 2 |
container_start_page | 398 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 13 |
creator | Qin, A.K. Huang, V.L. Suganthan, P.N. |
description | Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants. |
doi_str_mv | 10.1109/TEVC.2008.927706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34566380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4632146</ieee_id><sourcerecordid>2294849041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-fae84e80f50f5a46b4ce9051b29a246aaca31a5cde1dc98bede4e55f708951663</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhYfSQPPovtDNUGi6GudqJI00S-O4aSDEizoP6ELI8lWqMDNyJE0g-fWV45BFFgUhXdB3Dpx7iuILgQkh0J4s59ezSQ0gJ20tBDQfin3SMlIB1M3HPINsKyHk7afiIMZ7AMI4afeLP6fOWgw4JKe7cv7ouzE5P5TT7s4Hl_725U2-y98p6IR3T-V0rTdJvyDWh_Ks86usuxx7DM7kabFJrnfPL8RRsWd1F_Hz63tYXP2cL2e_qovF2flselEZRiFVVqNkKMHyfDRrVsxgC5ys6lbXrNHaaEo0N2ska9PKFa6RIedW5EicNA09LH7sfDfBP4wYk-pdNNh1ekA_RiUFhzrnZZk8_i9JGc9-EjL47R1478cw5BRKcsFqSdnWDXaQCT7GgFZtgut1eFIE1LYUtS1FbUtRu1Ky5Purr455XTbowbj4pquJoJQIkbmvO84h4ts3a2jO0dB_orqWCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857428344</pqid></control><display><type>article</type><title>Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, A.K. ; Huang, V.L. ; Suganthan, P.N.</creator><creatorcontrib>Qin, A.K. ; Huang, V.L. ; Suganthan, P.N.</creatorcontrib><description>Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2008.927706</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Algorithms ; Applied sciences ; Artificial intelligence ; Computational efficiency ; Computer science; control theory; systems ; Differential evolution (DE) ; Encoding ; Evolution ; Exact sciences and technology ; Feedback ; General aspects ; global numerical optimization ; Mathematical analysis ; Mathematical models ; Mechanical engineering ; Occupational training. Personnel. Work management ; Optimization ; parameter adaptation ; Pattern recognition ; Power engineering and energy ; Programmable control ; Searching ; self-adaptation ; Size control ; Stochastic processes ; Strategy ; strategy adaptation ; Studies ; Vectors (mathematics)</subject><ispartof>IEEE transactions on evolutionary computation, 2009-04, Vol.13 (2), p.398-417</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-fae84e80f50f5a46b4ce9051b29a246aaca31a5cde1dc98bede4e55f708951663</citedby><cites>FETCH-LOGICAL-c430t-fae84e80f50f5a46b4ce9051b29a246aaca31a5cde1dc98bede4e55f708951663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4632146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4632146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21733177$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, A.K.</creatorcontrib><creatorcontrib>Huang, V.L.</creatorcontrib><creatorcontrib>Suganthan, P.N.</creatorcontrib><title>Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Differential evolution (DE)</subject><subject>Encoding</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>General aspects</subject><subject>global numerical optimization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Occupational training. Personnel. Work management</subject><subject>Optimization</subject><subject>parameter adaptation</subject><subject>Pattern recognition</subject><subject>Power engineering and energy</subject><subject>Programmable control</subject><subject>Searching</subject><subject>self-adaptation</subject><subject>Size control</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>strategy adaptation</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtrGzEUhYfSQPPovtDNUGi6GudqJI00S-O4aSDEizoP6ELI8lWqMDNyJE0g-fWV45BFFgUhXdB3Dpx7iuILgQkh0J4s59ezSQ0gJ20tBDQfin3SMlIB1M3HPINsKyHk7afiIMZ7AMI4afeLP6fOWgw4JKe7cv7ouzE5P5TT7s4Hl_725U2-y98p6IR3T-V0rTdJvyDWh_Ks86usuxx7DM7kabFJrnfPL8RRsWd1F_Hz63tYXP2cL2e_qovF2flselEZRiFVVqNkKMHyfDRrVsxgC5ys6lbXrNHaaEo0N2ska9PKFa6RIedW5EicNA09LH7sfDfBP4wYk-pdNNh1ekA_RiUFhzrnZZk8_i9JGc9-EjL47R1478cw5BRKcsFqSdnWDXaQCT7GgFZtgut1eFIE1LYUtS1FbUtRu1Ky5Purr455XTbowbj4pquJoJQIkbmvO84h4ts3a2jO0dB_orqWCA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Qin, A.K.</creator><creator>Huang, V.L.</creator><creator>Suganthan, P.N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization</title><author>Qin, A.K. ; Huang, V.L. ; Suganthan, P.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-fae84e80f50f5a46b4ce9051b29a246aaca31a5cde1dc98bede4e55f708951663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Differential evolution (DE)</topic><topic>Encoding</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>General aspects</topic><topic>global numerical optimization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Occupational training. Personnel. Work management</topic><topic>Optimization</topic><topic>parameter adaptation</topic><topic>Pattern recognition</topic><topic>Power engineering and energy</topic><topic>Programmable control</topic><topic>Searching</topic><topic>self-adaptation</topic><topic>Size control</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>strategy adaptation</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, A.K.</creatorcontrib><creatorcontrib>Huang, V.L.</creatorcontrib><creatorcontrib>Suganthan, P.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, A.K.</au><au>Huang, V.L.</au><au>Suganthan, P.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>398</spage><epage>417</epage><pages>398-417</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2008.927706</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2009-04, Vol.13 (2), p.398-417 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_34566380 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Algorithms Applied sciences Artificial intelligence Computational efficiency Computer science control theory systems Differential evolution (DE) Encoding Evolution Exact sciences and technology Feedback General aspects global numerical optimization Mathematical analysis Mathematical models Mechanical engineering Occupational training. Personnel. Work management Optimization parameter adaptation Pattern recognition Power engineering and energy Programmable control Searching self-adaptation Size control Stochastic processes Strategy strategy adaptation Studies Vectors (mathematics) |
title | Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Evolution%20Algorithm%20With%20Strategy%20Adaptation%20for%20Global%20Numerical%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Qin,%20A.K.&rft.date=2009-04-01&rft.volume=13&rft.issue=2&rft.spage=398&rft.epage=417&rft.pages=398-417&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2008.927706&rft_dat=%3Cproquest_RIE%3E2294849041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857428344&rft_id=info:pmid/&rft_ieee_id=4632146&rfr_iscdi=true |