Computational Intelligence for Evolving Trading Rules

This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2009-02, Vol.13 (1), p.71-86
Hauptverfasser: Ghandar, A., Michalewicz, Z., Schmidt, M., Thuy-Duong To, Zurbrugg, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 71
container_title IEEE transactions on evolutionary computation
container_volume 13
creator Ghandar, A.
Michalewicz, Z.
Schmidt, M.
Thuy-Duong To
Zurbrugg, R.
description This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results of applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.
doi_str_mv 10.1109/TEVC.2008.915992
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34559968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4769003</ieee_id><sourcerecordid>34559968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fad2fec01a146f11ef3ca360d1888aa9eb4591f5db0289a0a78eba87c8487c723</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKd3wUvxoKfOl6RpkqOUqYOBIFO8haxNRkfXzKQd7L83peLBg5f33uF7j_f7ELrGMMMY5MNq_lHMCICYScykJCdogmWGUwCSn8YZhEw5F5_n6CKELQDOGJYTxAq32_ed7mrX6iZZtJ1pmnpj2tIk1vlkfnDNoW43ycrrauhvfWPCJTqzugnm6qdP0fvTfFW8pMvX50XxuExLKlmXWl0Ra0rAGme5xdhYWmqaQ4WFEFpLs86YxJZVayBCatBcmLUWvBRZLJzQKbof7-69--pN6NSuDmX8ULfG9UEJzoDQmCSSd_-SEYpWchHB2z_g1vU-Zo_XGM-IoBIiBCNUeheCN1btfb3T_qgwqEG3GnSrQbcadceVm3GlNsb84hnPJQCl39mreso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857428390</pqid></control><display><type>article</type><title>Computational Intelligence for Evolving Trading Rules</title><source>IEEE Electronic Library (IEL)</source><creator>Ghandar, A. ; Michalewicz, Z. ; Schmidt, M. ; Thuy-Duong To ; Zurbrugg, R.</creator><creatorcontrib>Ghandar, A. ; Michalewicz, Z. ; Schmidt, M. ; Thuy-Duong To ; Zurbrugg, R.</creatorcontrib><description>This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results of applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2008.915992</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive systems ; Asset management ; Australia ; Computation ; Computational intelligence ; Computer science ; Construction equipment ; Construction industry ; Dynamical systems ; Dynamics ; Evolutionary computation ; Fuzzy logic ; Fuzzy systems ; Intelligence ; Learning ; Markets ; portfolio management ; Portfolios ; stock market ; trading systems</subject><ispartof>IEEE transactions on evolutionary computation, 2009-02, Vol.13 (1), p.71-86</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fad2fec01a146f11ef3ca360d1888aa9eb4591f5db0289a0a78eba87c8487c723</citedby><cites>FETCH-LOGICAL-c395t-fad2fec01a146f11ef3ca360d1888aa9eb4591f5db0289a0a78eba87c8487c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4769003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4769003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghandar, A.</creatorcontrib><creatorcontrib>Michalewicz, Z.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Thuy-Duong To</creatorcontrib><creatorcontrib>Zurbrugg, R.</creatorcontrib><title>Computational Intelligence for Evolving Trading Rules</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results of applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.</description><subject>Adaptive systems</subject><subject>Asset management</subject><subject>Australia</subject><subject>Computation</subject><subject>Computational intelligence</subject><subject>Computer science</subject><subject>Construction equipment</subject><subject>Construction industry</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Evolutionary computation</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Intelligence</subject><subject>Learning</subject><subject>Markets</subject><subject>portfolio management</subject><subject>Portfolios</subject><subject>stock market</subject><subject>trading systems</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUh4MoOKd3wUvxoKfOl6RpkqOUqYOBIFO8haxNRkfXzKQd7L83peLBg5f33uF7j_f7ELrGMMMY5MNq_lHMCICYScykJCdogmWGUwCSn8YZhEw5F5_n6CKELQDOGJYTxAq32_ed7mrX6iZZtJ1pmnpj2tIk1vlkfnDNoW43ycrrauhvfWPCJTqzugnm6qdP0fvTfFW8pMvX50XxuExLKlmXWl0Ra0rAGme5xdhYWmqaQ4WFEFpLs86YxJZVayBCatBcmLUWvBRZLJzQKbof7-69--pN6NSuDmX8ULfG9UEJzoDQmCSSd_-SEYpWchHB2z_g1vU-Zo_XGM-IoBIiBCNUeheCN1btfb3T_qgwqEG3GnSrQbcadceVm3GlNsb84hnPJQCl39mreso</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ghandar, A.</creator><creator>Michalewicz, Z.</creator><creator>Schmidt, M.</creator><creator>Thuy-Duong To</creator><creator>Zurbrugg, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Computational Intelligence for Evolving Trading Rules</title><author>Ghandar, A. ; Michalewicz, Z. ; Schmidt, M. ; Thuy-Duong To ; Zurbrugg, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fad2fec01a146f11ef3ca360d1888aa9eb4591f5db0289a0a78eba87c8487c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive systems</topic><topic>Asset management</topic><topic>Australia</topic><topic>Computation</topic><topic>Computational intelligence</topic><topic>Computer science</topic><topic>Construction equipment</topic><topic>Construction industry</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Evolutionary computation</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Intelligence</topic><topic>Learning</topic><topic>Markets</topic><topic>portfolio management</topic><topic>Portfolios</topic><topic>stock market</topic><topic>trading systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghandar, A.</creatorcontrib><creatorcontrib>Michalewicz, Z.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Thuy-Duong To</creatorcontrib><creatorcontrib>Zurbrugg, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghandar, A.</au><au>Michalewicz, Z.</au><au>Schmidt, M.</au><au>Thuy-Duong To</au><au>Zurbrugg, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Intelligence for Evolving Trading Rules</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>13</volume><issue>1</issue><spage>71</spage><epage>86</epage><pages>71-86</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>This paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results of applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2008.915992</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2009-02, Vol.13 (1), p.71-86
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_34559968
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Asset management
Australia
Computation
Computational intelligence
Computer science
Construction equipment
Construction industry
Dynamical systems
Dynamics
Evolutionary computation
Fuzzy logic
Fuzzy systems
Intelligence
Learning
Markets
portfolio management
Portfolios
stock market
trading systems
title Computational Intelligence for Evolving Trading Rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Intelligence%20for%20Evolving%20Trading%20Rules&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Ghandar,%20A.&rft.date=2009-02-01&rft.volume=13&rft.issue=1&rft.spage=71&rft.epage=86&rft.pages=71-86&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2008.915992&rft_dat=%3Cproquest_RIE%3E34559968%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857428390&rft_id=info:pmid/&rft_ieee_id=4769003&rfr_iscdi=true