Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains

The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation − div ( h ( x ) ∇ u ) + q ( x ) u = f ( x , u ) in an unbounded domain Ω ⊂ R N ( N ≥ 3 ) , where h ( x ) ∈ L loc 1 ( Ω ) . The solutions will be obtained in a subspace of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-06, Vol.70 (11), p.3987-3996
Hauptverfasser: Toan, Hoang Quoc, Chung, Nguyen Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3996
container_issue 11
container_start_page 3987
container_title Nonlinear analysis
container_volume 70
creator Toan, Hoang Quoc
Chung, Nguyen Thanh
description The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation − div ( h ( x ) ∇ u ) + q ( x ) u = f ( x , u ) in an unbounded domain Ω ⊂ R N ( N ≥ 3 ) , where h ( x ) ∈ L loc 1 ( Ω ) . The solutions will be obtained in a subspace of the Sobolev space H 0 1 ( Ω ) and the proofs rely essentially on a variation of the Mountain pass theorem in [D.M. Duc, Nonlinear singular elliptic equations, J. London. Math. Soc. 40 (2) (1989) 420–440].
doi_str_mv 10.1016/j.na.2008.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34542597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X08004781</els_id><sourcerecordid>34542597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2f310fdd418677d534929285d33b57f4f6d1424616e7fa82947c17e787f63a5c3</originalsourceid><addsrcrecordid>eNp1UMlKBDEQDaLguNw95qK3HrOnx5uIGwheFLyFmAUy9iQzqW51_t5uRrwJBUVVvfeq6iF0RsmcEqoul_Ns54yQdj4F0XtoRlvNG8mo3EczwhVrpFBvh-gIYEkIoZqrGUq33wn6kF3AJeKvYD8wlG7oU8mAY6nYYtdZgGmaSx5yGpurbjsVXcrBVhy6Lq375HDYDHZHTBkP-b0M2QePfVnZlOEEHUTbQTj9zcfo9e725eaheXq-f7y5fmocl7JvWOSURO8FbZXWXnKxYAvWSs_5u9RRROWpYEJRFXS0LVsI7agOutVRcSsdP0YXO911LZshQG9WCdx4pM2hDGC4kILJhR6BZAd0tQDUEM26ppWtW0OJmTw1S5OtmTw1U5CJcv6rbcHZLlabXYI_HqNcjPeKEXe1w4Xx0c8UqgGXJpN9qsH1xpf0_5Ifl5qMRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34542597</pqid></control><display><type>article</type><title>Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains</title><source>Access via ScienceDirect (Elsevier)</source><creator>Toan, Hoang Quoc ; Chung, Nguyen Thanh</creator><creatorcontrib>Toan, Hoang Quoc ; Chung, Nguyen Thanh</creatorcontrib><description>The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation − div ( h ( x ) ∇ u ) + q ( x ) u = f ( x , u ) in an unbounded domain Ω ⊂ R N ( N ≥ 3 ) , where h ( x ) ∈ L loc 1 ( Ω ) . The solutions will be obtained in a subspace of the Sobolev space H 0 1 ( Ω ) and the proofs rely essentially on a variation of the Mountain pass theorem in [D.M. Duc, Nonlinear singular elliptic equations, J. London. Math. Soc. 40 (2) (1989) 420–440].</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2008.08.007</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Mountain pass theorem ; Nonuniformly elliptic equations ; Partial differential equations ; Sciences and techniques of general use ; The weakly continuously differentiable functional</subject><ispartof>Nonlinear analysis, 2009-06, Vol.70 (11), p.3987-3996</ispartof><rights>2008 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2f310fdd418677d534929285d33b57f4f6d1424616e7fa82947c17e787f63a5c3</citedby><cites>FETCH-LOGICAL-c355t-2f310fdd418677d534929285d33b57f4f6d1424616e7fa82947c17e787f63a5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2008.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21343494$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Chung, Nguyen Thanh</creatorcontrib><title>Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains</title><title>Nonlinear analysis</title><description>The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation − div ( h ( x ) ∇ u ) + q ( x ) u = f ( x , u ) in an unbounded domain Ω ⊂ R N ( N ≥ 3 ) , where h ( x ) ∈ L loc 1 ( Ω ) . The solutions will be obtained in a subspace of the Sobolev space H 0 1 ( Ω ) and the proofs rely essentially on a variation of the Mountain pass theorem in [D.M. Duc, Nonlinear singular elliptic equations, J. London. Math. Soc. 40 (2) (1989) 420–440].</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mountain pass theorem</subject><subject>Nonuniformly elliptic equations</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>The weakly continuously differentiable functional</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1UMlKBDEQDaLguNw95qK3HrOnx5uIGwheFLyFmAUy9iQzqW51_t5uRrwJBUVVvfeq6iF0RsmcEqoul_Ns54yQdj4F0XtoRlvNG8mo3EczwhVrpFBvh-gIYEkIoZqrGUq33wn6kF3AJeKvYD8wlG7oU8mAY6nYYtdZgGmaSx5yGpurbjsVXcrBVhy6Lq375HDYDHZHTBkP-b0M2QePfVnZlOEEHUTbQTj9zcfo9e725eaheXq-f7y5fmocl7JvWOSURO8FbZXWXnKxYAvWSs_5u9RRROWpYEJRFXS0LVsI7agOutVRcSsdP0YXO911LZshQG9WCdx4pM2hDGC4kILJhR6BZAd0tQDUEM26ppWtW0OJmTw1S5OtmTw1U5CJcv6rbcHZLlabXYI_HqNcjPeKEXe1w4Xx0c8UqgGXJpN9qsH1xpf0_5Ifl5qMRw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Toan, Hoang Quoc</creator><creator>Chung, Nguyen Thanh</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains</title><author>Toan, Hoang Quoc ; Chung, Nguyen Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2f310fdd418677d534929285d33b57f4f6d1424616e7fa82947c17e787f63a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mountain pass theorem</topic><topic>Nonuniformly elliptic equations</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>The weakly continuously differentiable functional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Chung, Nguyen Thanh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toan, Hoang Quoc</au><au>Chung, Nguyen Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>70</volume><issue>11</issue><spage>3987</spage><epage>3996</epage><pages>3987-3996</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation − div ( h ( x ) ∇ u ) + q ( x ) u = f ( x , u ) in an unbounded domain Ω ⊂ R N ( N ≥ 3 ) , where h ( x ) ∈ L loc 1 ( Ω ) . The solutions will be obtained in a subspace of the Sobolev space H 0 1 ( Ω ) and the proofs rely essentially on a variation of the Mountain pass theorem in [D.M. Duc, Nonlinear singular elliptic equations, J. London. Math. Soc. 40 (2) (1989) 420–440].</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2008.08.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2009-06, Vol.70 (11), p.3987-3996
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_34542597
source Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Mountain pass theorem
Nonuniformly elliptic equations
Partial differential equations
Sciences and techniques of general use
The weakly continuously differentiable functional
title Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20weak%20solutions%20for%20a%20class%20of%20nonuniformly%20nonlinear%20elliptic%20equations%20in%20unbounded%20domains&rft.jtitle=Nonlinear%20analysis&rft.au=Toan,%20Hoang%20Quoc&rft.date=2009-06-01&rft.volume=70&rft.issue=11&rft.spage=3987&rft.epage=3996&rft.pages=3987-3996&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2008.08.007&rft_dat=%3Cproquest_cross%3E34542597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34542597&rft_id=info:pmid/&rft_els_id=S0362546X08004781&rfr_iscdi=true