Scale-selective bias correction in a downscaling of global analysis using a regional model

Systematic large-scale errors are often found within the regional domain in the regional dynamical downscaling procedure. This paper proposes a method to suppress such errors using a combination of spectral tendency damping and area average correction of temperature, humidity, and surface pressure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2007-02, Vol.135 (2), p.334-350
Hauptverfasser: KANAMARU, Hideki, KANAMITSU, Masao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 2
container_start_page 334
container_title Monthly weather review
container_volume 135
creator KANAMARU, Hideki
KANAMITSU, Masao
description Systematic large-scale errors are often found within the regional domain in the regional dynamical downscaling procedure. This paper proposes a method to suppress such errors using a combination of spectral tendency damping and area average correction of temperature, humidity, and surface pressure in the Regional Spectral Model. The proposed scale-selective bias-correction method reduces the time tendency of the zonal and meridional wind components for the physical scale greater than a predetermined length. In addition, the area mean perturbations of temperature and humidity are forced to zero. The surface pressure difference between the model field and the global field is adjusted from the hydrostatic equation using the mean elevation difference between the two fields and the area mean temperature. Each of these three components of the technique is necessary for the model to effectively reduce large-scale errors in the regional domain. With this method, the downscaled field becomes less dependent on the domain size. Furthermore, the downscaled precipitation compares better with observations, as do the near-surface temperature and wind fields. The scheme allows much weaker lateral boundary relaxation, although it is still an essential part of the regional model. The use of a similar scheme is recommended for any regional model in the application of dynamical downscaling of analysis for climate studies.
doi_str_mv 10.1175/mwr3294.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34538914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34538914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-109a2a0aeaf75211dc0469165abe58526c6d8d3c1581c90d1fd73ff0557975b53</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq6rB79BUBQ8VDNpnkcRX6AIPhC8lNk0XbpkG012Fb-9LSsIgngKw_xmIP8hZBfYMYCWJ_OPVHIrjmGNjEByVjBhy3UyYozrgikhNslWzjPGmFKCj8jLg8Pgi-yDd4v23dNJi5m6mNJQx462HUVax48u97DtpjQ2dBriBAPFDsNnbjNd5qGBNPlpP9J35rH2YZtsNBiy3_l-x-Tp4vzx7Kq4ubu8Pju9KZzQelEAs8iRocdGSw5QOyaUBSVx4qWRXDlVm7p0IA04y2poal02DZNSWy0nshyTw9Xe1xTflj4vqnmbnQ8BOx-XuSqFLI0F8S_kfT5GS9XD_V9wFpep_1hvDFdcqiHVMdn7S4E1TAvQ0KOjFXIp5px8U72mdo7pswJWDRerbp_vh4tVgz34XohD2E3CzrX5Z8BICdya8guTxpPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198074171</pqid></control><display><type>article</type><title>Scale-selective bias correction in a downscaling of global analysis using a regional model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>KANAMARU, Hideki ; KANAMITSU, Masao</creator><creatorcontrib>KANAMARU, Hideki ; KANAMITSU, Masao</creatorcontrib><description>Systematic large-scale errors are often found within the regional domain in the regional dynamical downscaling procedure. This paper proposes a method to suppress such errors using a combination of spectral tendency damping and area average correction of temperature, humidity, and surface pressure in the Regional Spectral Model. The proposed scale-selective bias-correction method reduces the time tendency of the zonal and meridional wind components for the physical scale greater than a predetermined length. In addition, the area mean perturbations of temperature and humidity are forced to zero. The surface pressure difference between the model field and the global field is adjusted from the hydrostatic equation using the mean elevation difference between the two fields and the area mean temperature. Each of these three components of the technique is necessary for the model to effectively reduce large-scale errors in the regional domain. With this method, the downscaled field becomes less dependent on the domain size. Furthermore, the downscaled precipitation compares better with observations, as do the near-surface temperature and wind fields. The scheme allows much weaker lateral boundary relaxation, although it is still an essential part of the regional model. The use of a similar scheme is recommended for any regional model in the application of dynamical downscaling of analysis for climate studies.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/mwr3294.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Bias ; Boundaries ; Boundary conditions ; Climate ; Climate studies ; Climatic analysis ; Climatology. Bioclimatology. Climate change ; Components ; Damping ; Data assimilation ; Domains ; Earth, ocean, space ; Errors ; Exact sciences and technology ; External geophysics ; Fourier transforms ; Geophysics. Techniques, methods, instrumentation and models ; Humidity ; Hydrostatic equation ; Mean temperatures ; Meridional wind ; Meteorology ; Methods ; Modelling ; Perturbation ; Pressure ; Simulation ; Standard deviation ; Surface pressure ; Surface temperature ; Weather forecasting ; Wind ; Wind fields</subject><ispartof>Monthly weather review, 2007-02, Vol.135 (2), p.334-350</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Feb 2007</rights><rights>Copyright American Meteorological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-109a2a0aeaf75211dc0469165abe58526c6d8d3c1581c90d1fd73ff0557975b53</citedby><cites>FETCH-LOGICAL-c477t-109a2a0aeaf75211dc0469165abe58526c6d8d3c1581c90d1fd73ff0557975b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3668,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18551298$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KANAMARU, Hideki</creatorcontrib><creatorcontrib>KANAMITSU, Masao</creatorcontrib><title>Scale-selective bias correction in a downscaling of global analysis using a regional model</title><title>Monthly weather review</title><description>Systematic large-scale errors are often found within the regional domain in the regional dynamical downscaling procedure. This paper proposes a method to suppress such errors using a combination of spectral tendency damping and area average correction of temperature, humidity, and surface pressure in the Regional Spectral Model. The proposed scale-selective bias-correction method reduces the time tendency of the zonal and meridional wind components for the physical scale greater than a predetermined length. In addition, the area mean perturbations of temperature and humidity are forced to zero. The surface pressure difference between the model field and the global field is adjusted from the hydrostatic equation using the mean elevation difference between the two fields and the area mean temperature. Each of these three components of the technique is necessary for the model to effectively reduce large-scale errors in the regional domain. With this method, the downscaled field becomes less dependent on the domain size. Furthermore, the downscaled precipitation compares better with observations, as do the near-surface temperature and wind fields. The scheme allows much weaker lateral boundary relaxation, although it is still an essential part of the regional model. The use of a similar scheme is recommended for any regional model in the application of dynamical downscaling of analysis for climate studies.</description><subject>Bias</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Climate</subject><subject>Climate studies</subject><subject>Climatic analysis</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Components</subject><subject>Damping</subject><subject>Data assimilation</subject><subject>Domains</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fourier transforms</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Humidity</subject><subject>Hydrostatic equation</subject><subject>Mean temperatures</subject><subject>Meridional wind</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Modelling</subject><subject>Perturbation</subject><subject>Pressure</subject><subject>Simulation</subject><subject>Standard deviation</subject><subject>Surface pressure</subject><subject>Surface temperature</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind fields</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0UtLxDAQB_AgCq6rB79BUBQ8VDNpnkcRX6AIPhC8lNk0XbpkG012Fb-9LSsIgngKw_xmIP8hZBfYMYCWJ_OPVHIrjmGNjEByVjBhy3UyYozrgikhNslWzjPGmFKCj8jLg8Pgi-yDd4v23dNJi5m6mNJQx462HUVax48u97DtpjQ2dBriBAPFDsNnbjNd5qGBNPlpP9J35rH2YZtsNBiy3_l-x-Tp4vzx7Kq4ubu8Pju9KZzQelEAs8iRocdGSw5QOyaUBSVx4qWRXDlVm7p0IA04y2poal02DZNSWy0nshyTw9Xe1xTflj4vqnmbnQ8BOx-XuSqFLI0F8S_kfT5GS9XD_V9wFpep_1hvDFdcqiHVMdn7S4E1TAvQ0KOjFXIp5px8U72mdo7pswJWDRerbp_vh4tVgz34XohD2E3CzrX5Z8BICdya8guTxpPU</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>KANAMARU, Hideki</creator><creator>KANAMITSU, Masao</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070201</creationdate><title>Scale-selective bias correction in a downscaling of global analysis using a regional model</title><author>KANAMARU, Hideki ; KANAMITSU, Masao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-109a2a0aeaf75211dc0469165abe58526c6d8d3c1581c90d1fd73ff0557975b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bias</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Climate</topic><topic>Climate studies</topic><topic>Climatic analysis</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Components</topic><topic>Damping</topic><topic>Data assimilation</topic><topic>Domains</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fourier transforms</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Humidity</topic><topic>Hydrostatic equation</topic><topic>Mean temperatures</topic><topic>Meridional wind</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Modelling</topic><topic>Perturbation</topic><topic>Pressure</topic><topic>Simulation</topic><topic>Standard deviation</topic><topic>Surface pressure</topic><topic>Surface temperature</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KANAMARU, Hideki</creatorcontrib><creatorcontrib>KANAMITSU, Masao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KANAMARU, Hideki</au><au>KANAMITSU, Masao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale-selective bias correction in a downscaling of global analysis using a regional model</atitle><jtitle>Monthly weather review</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>135</volume><issue>2</issue><spage>334</spage><epage>350</epage><pages>334-350</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Systematic large-scale errors are often found within the regional domain in the regional dynamical downscaling procedure. This paper proposes a method to suppress such errors using a combination of spectral tendency damping and area average correction of temperature, humidity, and surface pressure in the Regional Spectral Model. The proposed scale-selective bias-correction method reduces the time tendency of the zonal and meridional wind components for the physical scale greater than a predetermined length. In addition, the area mean perturbations of temperature and humidity are forced to zero. The surface pressure difference between the model field and the global field is adjusted from the hydrostatic equation using the mean elevation difference between the two fields and the area mean temperature. Each of these three components of the technique is necessary for the model to effectively reduce large-scale errors in the regional domain. With this method, the downscaled field becomes less dependent on the domain size. Furthermore, the downscaled precipitation compares better with observations, as do the near-surface temperature and wind fields. The scheme allows much weaker lateral boundary relaxation, although it is still an essential part of the regional model. The use of a similar scheme is recommended for any regional model in the application of dynamical downscaling of analysis for climate studies.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/mwr3294.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2007-02, Vol.135 (2), p.334-350
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_miscellaneous_34538914
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Bias
Boundaries
Boundary conditions
Climate
Climate studies
Climatic analysis
Climatology. Bioclimatology. Climate change
Components
Damping
Data assimilation
Domains
Earth, ocean, space
Errors
Exact sciences and technology
External geophysics
Fourier transforms
Geophysics. Techniques, methods, instrumentation and models
Humidity
Hydrostatic equation
Mean temperatures
Meridional wind
Meteorology
Methods
Modelling
Perturbation
Pressure
Simulation
Standard deviation
Surface pressure
Surface temperature
Weather forecasting
Wind
Wind fields
title Scale-selective bias correction in a downscaling of global analysis using a regional model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale-selective%20bias%20correction%20in%20a%20downscaling%20of%20global%20analysis%20using%20a%20regional%20model&rft.jtitle=Monthly%20weather%20review&rft.au=KANAMARU,%20Hideki&rft.date=2007-02-01&rft.volume=135&rft.issue=2&rft.spage=334&rft.epage=350&rft.pages=334-350&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/mwr3294.1&rft_dat=%3Cproquest_cross%3E34538914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198074171&rft_id=info:pmid/&rfr_iscdi=true