A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V

The fretting wear behaviour of Ti–6Al–4V is experimentally investigated using a cylinder-on-flat specimen arrangement for different loads, strokes and numbers of fretting cycles, including partial slip and gross sliding conditions. An elastic–plastic, finite element (FE) based, incremental wear simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2009-06, Vol.267 (1), p.270-282
Hauptverfasser: Mohd Tobi, A.L., Ding, J., Bandak, G., Leen, S.B., Shipway, P.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 1
container_start_page 270
container_title Wear
container_volume 267
creator Mohd Tobi, A.L.
Ding, J.
Bandak, G.
Leen, S.B.
Shipway, P.H.
description The fretting wear behaviour of Ti–6Al–4V is experimentally investigated using a cylinder-on-flat specimen arrangement for different loads, strokes and numbers of fretting cycles, including partial slip and gross sliding conditions. An elastic–plastic, finite element (FE) based, incremental wear simulation approach is employed to study the evolution of the surface and sub-surface fretting variables, using a kinematic hardening (continuum) plasticity model to represent the cyclic plasticity behaviour. The predicted evolution of plastic deformation and fretting variables, such as contact pressure, relative slip, sub-surface stresses and critical-plane Smith–Watson–Topper (multiaxial) fatigue parameter, due to the simulated wear are compared with the observed wear scar characteristics and locations of crack initiation. It is shown that the characteristics of predicted plastic strain and damage accumulation are significantly different for the gross sliding and the partial slip cases and that the differences can be correlated with the observed differences in surface morphology and surface cracking. It is shown that the location of plasticity due to shear yielding at the surface promotes wear across the contact region for the gross sliding case and at the stick–slip interface for the partial slip case.
doi_str_mv 10.1016/j.wear.2008.12.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34537751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004316480900060X</els_id><sourcerecordid>34537751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-db5d137bd697c376e72a9717c58a1b831727127860e23933198c86be47ae2fc93</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EEkvhBTj5ArekHjvxOBKXVUUBqRKXgrhZzmQCXqXJYnup9sY78IY8CVltxbGXGY30_f_o_4V4DaoGBfZyV99zSLVWytWga2W6J2IDDk2lW8SnYqNUYyqwjXsuXuS8U0pB19qN-LaVuRyGo1xmWX6wjHPhFKjE9e653DPPckxcSpy_y9MPGeZB0pGmSHI_hVwixXKU45Lkbfz7-4_dTutsvr4Uz8YwZX71sC_El-v3t1cfq5vPHz5dbW8qajSWaujbAQz2g-2QDFpGHToEpNYF6J0B1AganVWsTWcMdI6c7bnBwHqkzlyIt2fffVp-HjgXfxcz8TSFmZdD9qZpDWILK6jPIKUl58Sj36d4F9LRg_KnEv3OnwL6U4ketF9LXEVvHtxDpjCNKcwU83-lBnTKqnbl3p05XqP-ipx8psgz8RATU_HDEh978w_oWYjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34537751</pqid></control><display><type>article</type><title>A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V</title><source>Elsevier ScienceDirect Journals</source><creator>Mohd Tobi, A.L. ; Ding, J. ; Bandak, G. ; Leen, S.B. ; Shipway, P.H.</creator><creatorcontrib>Mohd Tobi, A.L. ; Ding, J. ; Bandak, G. ; Leen, S.B. ; Shipway, P.H.</creatorcontrib><description>The fretting wear behaviour of Ti–6Al–4V is experimentally investigated using a cylinder-on-flat specimen arrangement for different loads, strokes and numbers of fretting cycles, including partial slip and gross sliding conditions. An elastic–plastic, finite element (FE) based, incremental wear simulation approach is employed to study the evolution of the surface and sub-surface fretting variables, using a kinematic hardening (continuum) plasticity model to represent the cyclic plasticity behaviour. The predicted evolution of plastic deformation and fretting variables, such as contact pressure, relative slip, sub-surface stresses and critical-plane Smith–Watson–Topper (multiaxial) fatigue parameter, due to the simulated wear are compared with the observed wear scar characteristics and locations of crack initiation. It is shown that the characteristics of predicted plastic strain and damage accumulation are significantly different for the gross sliding and the partial slip cases and that the differences can be correlated with the observed differences in surface morphology and surface cracking. It is shown that the location of plasticity due to shear yielding at the surface promotes wear across the contact region for the gross sliding case and at the stick–slip interface for the partial slip case.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2008.12.039</identifier><identifier>CODEN: WEARAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cylinder on flat ; Exact sciences and technology ; Finite element ; Fracture mechanics (crack, fatigue, damage...) ; Fretting wear ; Friction, wear, lubrication ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Machine components ; Mechanical engineering. Machine design ; Physics ; Plasticity ; Solid mechanics ; Structural and continuum mechanics ; Ti–6Al–4V</subject><ispartof>Wear, 2009-06, Vol.267 (1), p.270-282</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-db5d137bd697c376e72a9717c58a1b831727127860e23933198c86be47ae2fc93</citedby><cites>FETCH-LOGICAL-c427t-db5d137bd697c376e72a9717c58a1b831727127860e23933198c86be47ae2fc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004316480900060X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21780605$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohd Tobi, A.L.</creatorcontrib><creatorcontrib>Ding, J.</creatorcontrib><creatorcontrib>Bandak, G.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><creatorcontrib>Shipway, P.H.</creatorcontrib><title>A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V</title><title>Wear</title><description>The fretting wear behaviour of Ti–6Al–4V is experimentally investigated using a cylinder-on-flat specimen arrangement for different loads, strokes and numbers of fretting cycles, including partial slip and gross sliding conditions. An elastic–plastic, finite element (FE) based, incremental wear simulation approach is employed to study the evolution of the surface and sub-surface fretting variables, using a kinematic hardening (continuum) plasticity model to represent the cyclic plasticity behaviour. The predicted evolution of plastic deformation and fretting variables, such as contact pressure, relative slip, sub-surface stresses and critical-plane Smith–Watson–Topper (multiaxial) fatigue parameter, due to the simulated wear are compared with the observed wear scar characteristics and locations of crack initiation. It is shown that the characteristics of predicted plastic strain and damage accumulation are significantly different for the gross sliding and the partial slip cases and that the differences can be correlated with the observed differences in surface morphology and surface cracking. It is shown that the location of plasticity due to shear yielding at the surface promotes wear across the contact region for the gross sliding case and at the stick–slip interface for the partial slip case.</description><subject>Applied sciences</subject><subject>Cylinder on flat</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fretting wear</subject><subject>Friction, wear, lubrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Machine components</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Ti–6Al–4V</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EEkvhBTj5ArekHjvxOBKXVUUBqRKXgrhZzmQCXqXJYnup9sY78IY8CVltxbGXGY30_f_o_4V4DaoGBfZyV99zSLVWytWga2W6J2IDDk2lW8SnYqNUYyqwjXsuXuS8U0pB19qN-LaVuRyGo1xmWX6wjHPhFKjE9e653DPPckxcSpy_y9MPGeZB0pGmSHI_hVwixXKU45Lkbfz7-4_dTutsvr4Uz8YwZX71sC_El-v3t1cfq5vPHz5dbW8qajSWaujbAQz2g-2QDFpGHToEpNYF6J0B1AganVWsTWcMdI6c7bnBwHqkzlyIt2fffVp-HjgXfxcz8TSFmZdD9qZpDWILK6jPIKUl58Sj36d4F9LRg_KnEv3OnwL6U4ketF9LXEVvHtxDpjCNKcwU83-lBnTKqnbl3p05XqP-ipx8psgz8RATU_HDEh978w_oWYjQ</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Mohd Tobi, A.L.</creator><creator>Ding, J.</creator><creator>Bandak, G.</creator><creator>Leen, S.B.</creator><creator>Shipway, P.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V</title><author>Mohd Tobi, A.L. ; Ding, J. ; Bandak, G. ; Leen, S.B. ; Shipway, P.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-db5d137bd697c376e72a9717c58a1b831727127860e23933198c86be47ae2fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cylinder on flat</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fretting wear</topic><topic>Friction, wear, lubrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Machine components</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohd Tobi, A.L.</creatorcontrib><creatorcontrib>Ding, J.</creatorcontrib><creatorcontrib>Bandak, G.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><creatorcontrib>Shipway, P.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohd Tobi, A.L.</au><au>Ding, J.</au><au>Bandak, G.</au><au>Leen, S.B.</au><au>Shipway, P.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V</atitle><jtitle>Wear</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>267</volume><issue>1</issue><spage>270</spage><epage>282</epage><pages>270-282</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><coden>WEARAH</coden><abstract>The fretting wear behaviour of Ti–6Al–4V is experimentally investigated using a cylinder-on-flat specimen arrangement for different loads, strokes and numbers of fretting cycles, including partial slip and gross sliding conditions. An elastic–plastic, finite element (FE) based, incremental wear simulation approach is employed to study the evolution of the surface and sub-surface fretting variables, using a kinematic hardening (continuum) plasticity model to represent the cyclic plasticity behaviour. The predicted evolution of plastic deformation and fretting variables, such as contact pressure, relative slip, sub-surface stresses and critical-plane Smith–Watson–Topper (multiaxial) fatigue parameter, due to the simulated wear are compared with the observed wear scar characteristics and locations of crack initiation. It is shown that the characteristics of predicted plastic strain and damage accumulation are significantly different for the gross sliding and the partial slip cases and that the differences can be correlated with the observed differences in surface morphology and surface cracking. It is shown that the location of plasticity due to shear yielding at the surface promotes wear across the contact region for the gross sliding case and at the stick–slip interface for the partial slip case.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2008.12.039</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2009-06, Vol.267 (1), p.270-282
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_miscellaneous_34537751
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cylinder on flat
Exact sciences and technology
Finite element
Fracture mechanics (crack, fatigue, damage...)
Fretting wear
Friction, wear, lubrication
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Machine components
Mechanical engineering. Machine design
Physics
Plasticity
Solid mechanics
Structural and continuum mechanics
Ti–6Al–4V
title A study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20interaction%20between%20fretting%20wear%20and%20cyclic%20plasticity%20for%20Ti%E2%80%936Al%E2%80%934V&rft.jtitle=Wear&rft.au=Mohd%20Tobi,%20A.L.&rft.date=2009-06-01&rft.volume=267&rft.issue=1&rft.spage=270&rft.epage=282&rft.pages=270-282&rft.issn=0043-1648&rft.eissn=1873-2577&rft.coden=WEARAH&rft_id=info:doi/10.1016/j.wear.2008.12.039&rft_dat=%3Cproquest_cross%3E34537751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34537751&rft_id=info:pmid/&rft_els_id=S004316480900060X&rfr_iscdi=true