Solving ability of Hopfield Neural Network with scale-rule noise for QAP
One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution can...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | |
container_volume | |
creator | Tada, Y Uwate, Y Nishio, Y |
description | One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method. |
doi_str_mv | 10.1109/ISCAS.2008.4541365 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34534117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4541365</ieee_id><sourcerecordid>34534117</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-5c44926f9d296d1f30c95dc8c3d453b7812220083f93f45da54d1fbce814adb53</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc2jEqH0B2DjFbsUP5N4WVWFVqp4qLCOHMcGg1sXO6Hq32PUMpu7mKOrOQPANUZjjJG4W6ymk9WYIFSNGWeYFvwEXGJGGMNFxfApyAjmVY454WdgJMrqf0fLc5AhUuKcUUQGIKtQXrCCU3QBRjF-ojSMU8JJBuYr737s5h3Kxjrb7aE3cO63xmrXwkfdB-lSdDsfvuDOdh8wKul0Hnqn4cbbqKHxAb5Mnq_AwEgX9eiYQ_B2P3udzvPl08NiOlnmlnDU5VwxJkhhREtE0WJDkRK8VZWibTqpSRKE_ClTI6hhvJWcJapROtnJtuF0CG4Pvdvgv3sdu3pto9LOyY32faxpqmEYlwm8OYBWa11vg13LsK-Pn6S_Y0tfdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34534117</pqid></control><display><type>conference_proceeding</type><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tada, Y ; Uwate, Y ; Nishio, Y</creator><creatorcontrib>Tada, Y ; Uwate, Y ; Nishio, Y</creatorcontrib><description>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</description><identifier>ISSN: 0271-4302</identifier><identifier>ISBN: 9781424416837</identifier><identifier>ISBN: 1424416833</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 1424416841</identifier><identifier>EISBN: 9781424416844</identifier><identifier>DOI: 10.1109/ISCAS.2008.4541365</identifier><identifier>LCCN: 80-646530</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Computer simulation ; Hopfield neural networks ; Logistics ; Neural networks ; Neurons ; Noise level ; Performance gain ; Production facilities ; Stochastic resonance</subject><ispartof>2008 IEEE International Symposium on Circuits and Systems, 2008, p.105-108</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4541365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4541365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tada, Y</creatorcontrib><creatorcontrib>Uwate, Y</creatorcontrib><creatorcontrib>Nishio, Y</creatorcontrib><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><title>2008 IEEE International Symposium on Circuits and Systems</title><addtitle>ISCAS</addtitle><description>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</description><subject>Chaos</subject><subject>Computer simulation</subject><subject>Hopfield neural networks</subject><subject>Logistics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise level</subject><subject>Performance gain</subject><subject>Production facilities</subject><subject>Stochastic resonance</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9781424416837</isbn><isbn>1424416833</isbn><isbn>1424416841</isbn><isbn>9781424416844</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRc2jEqH0B2DjFbsUP5N4WVWFVqp4qLCOHMcGg1sXO6Hq32PUMpu7mKOrOQPANUZjjJG4W6ymk9WYIFSNGWeYFvwEXGJGGMNFxfApyAjmVY454WdgJMrqf0fLc5AhUuKcUUQGIKtQXrCCU3QBRjF-ojSMU8JJBuYr737s5h3Kxjrb7aE3cO63xmrXwkfdB-lSdDsfvuDOdh8wKul0Hnqn4cbbqKHxAb5Mnq_AwEgX9eiYQ_B2P3udzvPl08NiOlnmlnDU5VwxJkhhREtE0WJDkRK8VZWibTqpSRKE_ClTI6hhvJWcJapROtnJtuF0CG4Pvdvgv3sdu3pto9LOyY32faxpqmEYlwm8OYBWa11vg13LsK-Pn6S_Y0tfdw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Tada, Y</creator><creator>Uwate, Y</creator><creator>Nishio, Y</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><author>Tada, Y ; Uwate, Y ; Nishio, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-5c44926f9d296d1f30c95dc8c3d453b7812220083f93f45da54d1fbce814adb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chaos</topic><topic>Computer simulation</topic><topic>Hopfield neural networks</topic><topic>Logistics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise level</topic><topic>Performance gain</topic><topic>Production facilities</topic><topic>Stochastic resonance</topic><toplevel>online_resources</toplevel><creatorcontrib>Tada, Y</creatorcontrib><creatorcontrib>Uwate, Y</creatorcontrib><creatorcontrib>Nishio, Y</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tada, Y</au><au>Uwate, Y</au><au>Nishio, Y</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</atitle><btitle>2008 IEEE International Symposium on Circuits and Systems</btitle><stitle>ISCAS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>105</spage><epage>108</epage><pages>105-108</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><isbn>9781424416837</isbn><isbn>1424416833</isbn><eisbn>1424416841</eisbn><eisbn>9781424416844</eisbn><abstract>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2008.4541365</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0271-4302 |
ispartof | 2008 IEEE International Symposium on Circuits and Systems, 2008, p.105-108 |
issn | 0271-4302 2158-1525 |
language | eng |
recordid | cdi_proquest_miscellaneous_34534117 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chaos Computer simulation Hopfield neural networks Logistics Neural networks Neurons Noise level Performance gain Production facilities Stochastic resonance |
title | Solving ability of Hopfield Neural Network with scale-rule noise for QAP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20ability%20of%20Hopfield%20Neural%20Network%20with%20scale-rule%20noise%20for%20QAP&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems&rft.au=Tada,%20Y&rft.date=2008-01-01&rft.spage=105&rft.epage=108&rft.pages=105-108&rft.issn=0271-4302&rft.eissn=2158-1525&rft.isbn=9781424416837&rft.isbn_list=1424416833&rft_id=info:doi/10.1109/ISCAS.2008.4541365&rft_dat=%3Cproquest_6IE%3E34534117%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416841&rft.eisbn_list=9781424416844&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34534117&rft_id=info:pmid/&rft_ieee_id=4541365&rfr_iscdi=true |