Solving ability of Hopfield Neural Network with scale-rule noise for QAP

One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tada, Y, Uwate, Y, Nishio, Y
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 105
container_title
container_volume
creator Tada, Y
Uwate, Y
Nishio, Y
description One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.
doi_str_mv 10.1109/ISCAS.2008.4541365
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34534117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4541365</ieee_id><sourcerecordid>34534117</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-5c44926f9d296d1f30c95dc8c3d453b7812220083f93f45da54d1fbce814adb53</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc2jEqH0B2DjFbsUP5N4WVWFVqp4qLCOHMcGg1sXO6Hq32PUMpu7mKOrOQPANUZjjJG4W6ymk9WYIFSNGWeYFvwEXGJGGMNFxfApyAjmVY454WdgJMrqf0fLc5AhUuKcUUQGIKtQXrCCU3QBRjF-ojSMU8JJBuYr737s5h3Kxjrb7aE3cO63xmrXwkfdB-lSdDsfvuDOdh8wKul0Hnqn4cbbqKHxAb5Mnq_AwEgX9eiYQ_B2P3udzvPl08NiOlnmlnDU5VwxJkhhREtE0WJDkRK8VZWibTqpSRKE_ClTI6hhvJWcJapROtnJtuF0CG4Pvdvgv3sdu3pto9LOyY32faxpqmEYlwm8OYBWa11vg13LsK-Pn6S_Y0tfdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34534117</pqid></control><display><type>conference_proceeding</type><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tada, Y ; Uwate, Y ; Nishio, Y</creator><creatorcontrib>Tada, Y ; Uwate, Y ; Nishio, Y</creatorcontrib><description>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</description><identifier>ISSN: 0271-4302</identifier><identifier>ISBN: 9781424416837</identifier><identifier>ISBN: 1424416833</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 1424416841</identifier><identifier>EISBN: 9781424416844</identifier><identifier>DOI: 10.1109/ISCAS.2008.4541365</identifier><identifier>LCCN: 80-646530</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Computer simulation ; Hopfield neural networks ; Logistics ; Neural networks ; Neurons ; Noise level ; Performance gain ; Production facilities ; Stochastic resonance</subject><ispartof>2008 IEEE International Symposium on Circuits and Systems, 2008, p.105-108</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4541365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2056,27923,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4541365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tada, Y</creatorcontrib><creatorcontrib>Uwate, Y</creatorcontrib><creatorcontrib>Nishio, Y</creatorcontrib><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><title>2008 IEEE International Symposium on Circuits and Systems</title><addtitle>ISCAS</addtitle><description>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</description><subject>Chaos</subject><subject>Computer simulation</subject><subject>Hopfield neural networks</subject><subject>Logistics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise level</subject><subject>Performance gain</subject><subject>Production facilities</subject><subject>Stochastic resonance</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9781424416837</isbn><isbn>1424416833</isbn><isbn>1424416841</isbn><isbn>9781424416844</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRc2jEqH0B2DjFbsUP5N4WVWFVqp4qLCOHMcGg1sXO6Hq32PUMpu7mKOrOQPANUZjjJG4W6ymk9WYIFSNGWeYFvwEXGJGGMNFxfApyAjmVY454WdgJMrqf0fLc5AhUuKcUUQGIKtQXrCCU3QBRjF-ojSMU8JJBuYr737s5h3Kxjrb7aE3cO63xmrXwkfdB-lSdDsfvuDOdh8wKul0Hnqn4cbbqKHxAb5Mnq_AwEgX9eiYQ_B2P3udzvPl08NiOlnmlnDU5VwxJkhhREtE0WJDkRK8VZWibTqpSRKE_ClTI6hhvJWcJapROtnJtuF0CG4Pvdvgv3sdu3pto9LOyY32faxpqmEYlwm8OYBWa11vg13LsK-Pn6S_Y0tfdw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Tada, Y</creator><creator>Uwate, Y</creator><creator>Nishio, Y</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</title><author>Tada, Y ; Uwate, Y ; Nishio, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-5c44926f9d296d1f30c95dc8c3d453b7812220083f93f45da54d1fbce814adb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chaos</topic><topic>Computer simulation</topic><topic>Hopfield neural networks</topic><topic>Logistics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise level</topic><topic>Performance gain</topic><topic>Production facilities</topic><topic>Stochastic resonance</topic><toplevel>online_resources</toplevel><creatorcontrib>Tada, Y</creatorcontrib><creatorcontrib>Uwate, Y</creatorcontrib><creatorcontrib>Nishio, Y</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tada, Y</au><au>Uwate, Y</au><au>Nishio, Y</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving ability of Hopfield Neural Network with scale-rule noise for QAP</atitle><btitle>2008 IEEE International Symposium on Circuits and Systems</btitle><stitle>ISCAS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>105</spage><epage>108</epage><pages>105-108</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><isbn>9781424416837</isbn><isbn>1424416833</isbn><eisbn>1424416841</eisbn><eisbn>9781424416844</eisbn><abstract>One of the applications of neural network is solving combinatorial optimization problems. In our past study, the solving ability of the Hopfield Neural Network with noise for quadratic assignment problem is investigated. However, even if we injected the noise to the network, the optimal solution cannot occasionally be found. In this study, we propose the method adding scale-rule noise to the Hopfield Neural Network to achieve better performance. By computer simulations solving quadratic assignment problem, we evaluate the performance of the method.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2008.4541365</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0271-4302
ispartof 2008 IEEE International Symposium on Circuits and Systems, 2008, p.105-108
issn 0271-4302
2158-1525
language eng
recordid cdi_proquest_miscellaneous_34534117
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaos
Computer simulation
Hopfield neural networks
Logistics
Neural networks
Neurons
Noise level
Performance gain
Production facilities
Stochastic resonance
title Solving ability of Hopfield Neural Network with scale-rule noise for QAP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20ability%20of%20Hopfield%20Neural%20Network%20with%20scale-rule%20noise%20for%20QAP&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems&rft.au=Tada,%20Y&rft.date=2008-01-01&rft.spage=105&rft.epage=108&rft.pages=105-108&rft.issn=0271-4302&rft.eissn=2158-1525&rft.isbn=9781424416837&rft.isbn_list=1424416833&rft_id=info:doi/10.1109/ISCAS.2008.4541365&rft_dat=%3Cproquest_6IE%3E34534117%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424416841&rft.eisbn_list=9781424416844&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34534117&rft_id=info:pmid/&rft_ieee_id=4541365&rfr_iscdi=true