RSNS-to-Binary Conversion

The robust symmetrical number system (RSNS) is a symmetrical number system formed such that only one element in each RSNS vector changes between code transitions. This integer Gray-code property makes the RSNS useful in analog-to-digital converters (ADC), direction finding antenna architectures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2007-09, Vol.54 (9), p.2030-2043
Hauptverfasser: Luke, B.L., Pace, P.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2043
container_issue 9
container_start_page 2030
container_title IEEE transactions on circuits and systems. 1, Fundamental theory and applications
container_volume 54
creator Luke, B.L.
Pace, P.E.
description The robust symmetrical number system (RSNS) is a symmetrical number system formed such that only one element in each RSNS vector changes between code transitions. This integer Gray-code property makes the RSNS useful in analog-to-digital converters (ADC), direction finding antenna architectures and electro-optical ADCs since it eliminates any encoding errors that can occur when the input signal lies about any code transition point. One of the fundamental difficulties in a hardware application of the RSNS, such as an ADC, is the conversion of the RSNS residue vectors into a more convenient representation such as a binary number. By exploiting the one-to-one correspondence between the RSNS and the residue number system, an efficient process for conversion of the symmetrical residues is formed. The conversion process presented in this paper produces a hardware implementation that is at least an order of magnitude smaller in terms of transistor count than read-only-memory conversion methods, and is easily pipelined to achieve fast conversion speeds.
doi_str_mv 10.1109/TCSI.2007.904683
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34533038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4303303</ieee_id><sourcerecordid>1671435978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-44469770d1c6c537f8f9b0aaeaf498dc33d9cae5f2d15dbda648fc47363de6453</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3xYt4EC-pk518HnXxo1AUbD2HNJuFLe2uJq3gvzfLigcPwsDM4XmHmYeQUwYTxsDcLMr5dFIAqIkBLjXukRETQlPQIPf7mRuqsdCH5CilFUBhANmInL3On-d029G7pnXx66Ls2s8QU9O1x-SgdusUTn76mLw93C_KJzp7eZyWtzPqUfAt5ZxLoxRUzEsvUNW6NktwLriaG115xMp4F0RdVExUy8pJrmvPFUqsguQCx-Rq2Pseu49dSFu7aZIP67VrQ7dLFjODgDqD1_-CTCrGURjVo5d_0FW3i21-w2rJjVQGMUMwQD52KcVQ2_fYbLIEy8D2Tm3v1PZO7eA0R86HSBNC-MV5Pq-vb6jmb7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864967933</pqid></control><display><type>article</type><title>RSNS-to-Binary Conversion</title><source>IEEE Electronic Library (IEL)</source><creator>Luke, B.L. ; Pace, P.E.</creator><creatorcontrib>Luke, B.L. ; Pace, P.E.</creatorcontrib><description>The robust symmetrical number system (RSNS) is a symmetrical number system formed such that only one element in each RSNS vector changes between code transitions. This integer Gray-code property makes the RSNS useful in analog-to-digital converters (ADC), direction finding antenna architectures and electro-optical ADCs since it eliminates any encoding errors that can occur when the input signal lies about any code transition point. One of the fundamental difficulties in a hardware application of the RSNS, such as an ADC, is the conversion of the RSNS residue vectors into a more convenient representation such as a binary number. By exploiting the one-to-one correspondence between the RSNS and the residue number system, an efficient process for conversion of the symmetrical residues is formed. The conversion process presented in this paper produces a hardware implementation that is at least an order of magnitude smaller in terms of transistor count than read-only-memory conversion methods, and is easily pipelined to achieve fast conversion speeds.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2007.904683</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog-digital conversion ; Antennas ; Architecture ; Circuit theory ; Conversion ; converters ; Data conversion ; Design engineering ; Digital signal processing ; Directive antennas ; Discrete Fourier transforms ; Dynamic range ; Encoding ; Hardware ; Mathematical analysis ; Number systems ; Residues ; robust symmetrical number systems (RSNSs) ; Robustness ; symmetry ; Vectors (mathematics)</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-09, Vol.54 (9), p.2030-2043</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-44469770d1c6c537f8f9b0aaeaf498dc33d9cae5f2d15dbda648fc47363de6453</citedby><cites>FETCH-LOGICAL-c354t-44469770d1c6c537f8f9b0aaeaf498dc33d9cae5f2d15dbda648fc47363de6453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4303303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4303303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luke, B.L.</creatorcontrib><creatorcontrib>Pace, P.E.</creatorcontrib><title>RSNS-to-Binary Conversion</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>The robust symmetrical number system (RSNS) is a symmetrical number system formed such that only one element in each RSNS vector changes between code transitions. This integer Gray-code property makes the RSNS useful in analog-to-digital converters (ADC), direction finding antenna architectures and electro-optical ADCs since it eliminates any encoding errors that can occur when the input signal lies about any code transition point. One of the fundamental difficulties in a hardware application of the RSNS, such as an ADC, is the conversion of the RSNS residue vectors into a more convenient representation such as a binary number. By exploiting the one-to-one correspondence between the RSNS and the residue number system, an efficient process for conversion of the symmetrical residues is formed. The conversion process presented in this paper produces a hardware implementation that is at least an order of magnitude smaller in terms of transistor count than read-only-memory conversion methods, and is easily pipelined to achieve fast conversion speeds.</description><subject>Analog-digital conversion</subject><subject>Antennas</subject><subject>Architecture</subject><subject>Circuit theory</subject><subject>Conversion</subject><subject>converters</subject><subject>Data conversion</subject><subject>Design engineering</subject><subject>Digital signal processing</subject><subject>Directive antennas</subject><subject>Discrete Fourier transforms</subject><subject>Dynamic range</subject><subject>Encoding</subject><subject>Hardware</subject><subject>Mathematical analysis</subject><subject>Number systems</subject><subject>Residues</subject><subject>robust symmetrical number systems (RSNSs)</subject><subject>Robustness</subject><subject>symmetry</subject><subject>Vectors (mathematics)</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt3xYt4EC-pk518HnXxo1AUbD2HNJuFLe2uJq3gvzfLigcPwsDM4XmHmYeQUwYTxsDcLMr5dFIAqIkBLjXukRETQlPQIPf7mRuqsdCH5CilFUBhANmInL3On-d029G7pnXx66Ls2s8QU9O1x-SgdusUTn76mLw93C_KJzp7eZyWtzPqUfAt5ZxLoxRUzEsvUNW6NktwLriaG115xMp4F0RdVExUy8pJrmvPFUqsguQCx-Rq2Pseu49dSFu7aZIP67VrQ7dLFjODgDqD1_-CTCrGURjVo5d_0FW3i21-w2rJjVQGMUMwQD52KcVQ2_fYbLIEy8D2Tm3v1PZO7eA0R86HSBNC-MV5Pq-vb6jmb7I</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Luke, B.L.</creator><creator>Pace, P.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070901</creationdate><title>RSNS-to-Binary Conversion</title><author>Luke, B.L. ; Pace, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-44469770d1c6c537f8f9b0aaeaf498dc33d9cae5f2d15dbda648fc47363de6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analog-digital conversion</topic><topic>Antennas</topic><topic>Architecture</topic><topic>Circuit theory</topic><topic>Conversion</topic><topic>converters</topic><topic>Data conversion</topic><topic>Design engineering</topic><topic>Digital signal processing</topic><topic>Directive antennas</topic><topic>Discrete Fourier transforms</topic><topic>Dynamic range</topic><topic>Encoding</topic><topic>Hardware</topic><topic>Mathematical analysis</topic><topic>Number systems</topic><topic>Residues</topic><topic>robust symmetrical number systems (RSNSs)</topic><topic>Robustness</topic><topic>symmetry</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luke, B.L.</creatorcontrib><creatorcontrib>Pace, P.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luke, B.L.</au><au>Pace, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSNS-to-Binary Conversion</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>54</volume><issue>9</issue><spage>2030</spage><epage>2043</epage><pages>2030-2043</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The robust symmetrical number system (RSNS) is a symmetrical number system formed such that only one element in each RSNS vector changes between code transitions. This integer Gray-code property makes the RSNS useful in analog-to-digital converters (ADC), direction finding antenna architectures and electro-optical ADCs since it eliminates any encoding errors that can occur when the input signal lies about any code transition point. One of the fundamental difficulties in a hardware application of the RSNS, such as an ADC, is the conversion of the RSNS residue vectors into a more convenient representation such as a binary number. By exploiting the one-to-one correspondence between the RSNS and the residue number system, an efficient process for conversion of the symmetrical residues is formed. The conversion process presented in this paper produces a hardware implementation that is at least an order of magnitude smaller in terms of transistor count than read-only-memory conversion methods, and is easily pipelined to achieve fast conversion speeds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2007.904683</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-09, Vol.54 (9), p.2030-2043
issn 1549-8328
1057-7122
1558-0806
language eng
recordid cdi_proquest_miscellaneous_34533038
source IEEE Electronic Library (IEL)
subjects Analog-digital conversion
Antennas
Architecture
Circuit theory
Conversion
converters
Data conversion
Design engineering
Digital signal processing
Directive antennas
Discrete Fourier transforms
Dynamic range
Encoding
Hardware
Mathematical analysis
Number systems
Residues
robust symmetrical number systems (RSNSs)
Robustness
symmetry
Vectors (mathematics)
title RSNS-to-Binary Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSNS-to-Binary%20Conversion&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Luke,%20B.L.&rft.date=2007-09-01&rft.volume=54&rft.issue=9&rft.spage=2030&rft.epage=2043&rft.pages=2030-2043&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2007.904683&rft_dat=%3Cproquest_RIE%3E1671435978%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864967933&rft_id=info:pmid/&rft_ieee_id=4303303&rfr_iscdi=true