Real-time discrete recurrent high order neural observer for induction motors

A nonlinear discrete-time neural observer for the state estimation of a discrete-time induction motor model, in presence of external and internal uncertainties is presented. The observer is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alanis, A.Y., Sanchez, E.N., Loukianov, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear discrete-time neural observer for the state estimation of a discrete-time induction motor model, in presence of external and internal uncertainties is presented. The observer is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm. This observer estimates the state of the unknown discrete-time nonlinear system, using a parallel configuration. The paper also includes the stability proof on the basis of the Lyapunov approach. To illustrate the applicability real-time results are included.
ISSN:2161-4393
1522-4899
2161-4407
DOI:10.1109/IJCNN.2008.4633923