Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation
As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2008-08, Vol.55 (7), p.2064-2075 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2075 |
---|---|
container_issue | 7 |
container_start_page | 2064 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 55 |
creator | Ning Mi Fan, J. Tan, S.X-D. Yici Cai Xianlong Hong |
description | As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. The new analysis is based on the Hermite polynomial chaos (PC) representation of random processes. Different from the existing Hermite PC based method for power grid analysis (Ghanta et al ., 2005), which models all the random variations as Gaussian processes without considering spatial correlation, the new method consider both wire variations and subthreshold leakage current variations, which are modeled as log-normal distribution random variables, on the power grid voltage variations. To consider the spatial correlation, we apply orthogonal decomposition to map the correlated random variables into independent variables. Our experiment results show that the new method is more accurate than the Gaussian-only Hermite PC method using the Taylor expansion method for analyzing leakage current variations. It is two orders of magnitude faster than the Monte Carlo method with small variance errors. We also show that the spatial correlation may lead to large errors if not being considered in the statistical analysis. |
doi_str_mv | 10.1109/TCSI.2008.918215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34530012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4447685</ieee_id><sourcerecordid>34530012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5a446b304af0c9328381a6b8bac122fa1be918b6a00e65993be1c2bf819e23983</originalsourceid><addsrcrecordid>eNp9kbtPwzAQxiMEEs8dicVigCnl_ErtEYWnVFGk8hgjJ1yK2zQudgrqyH-OSxEDA9Pd6X73Sd99SXJIoUcp6LOHfHTbYwCqp6liVG4kO1RKlYKCbHPVC50qztR2shvCBIBp4HQn-Rx1prOhs5VpyHlrmmWwgbiaDNs0f7Vzcu8-0JMLbOw7-iW5w-7D-WkguWuDfUFv2zEZuHHr_CwqDNBMzRhJvvAe2448GW-jfmTJs-1eyWgep8jlLu6b781-slWbJuDBT91LHq8uH_KbdDC8vs3PB2nFJe9SaYTISg7C1FDpaIQrarJSlaaijNWGlhiNl5kBwExqzUukFStrRTUyrhXfS07XunPv3hYYumJmQ4VNY1p0i1Co-CjRZ5xH8uRfkgvJASiL4PEfcOIWPj4xqmWcCaGliBCsocq7EDzWxdzbmfHLgkKxiq5YRVesoivW0cWTo_WJRcRfXAjRz5TkXx3Glfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863244954</pqid></control><display><type>article</type><title>Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation</title><source>IEEE Electronic Library (IEL)</source><creator>Ning Mi ; Fan, J. ; Tan, S.X-D. ; Yici Cai ; Xianlong Hong</creator><creatorcontrib>Ning Mi ; Fan, J. ; Tan, S.X-D. ; Yici Cai ; Xianlong Hong</creatorcontrib><description>As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. The new analysis is based on the Hermite polynomial chaos (PC) representation of random processes. Different from the existing Hermite PC based method for power grid analysis (Ghanta et al ., 2005), which models all the random variations as Gaussian processes without considering spatial correlation, the new method consider both wire variations and subthreshold leakage current variations, which are modeled as log-normal distribution random variables, on the power grid voltage variations. To consider the spatial correlation, we apply orthogonal decomposition to map the correlated random variables into independent variables. Our experiment results show that the new method is more accurate than the Gaussian-only Hermite PC method using the Taylor expansion method for analyzing leakage current variations. It is two orders of magnitude faster than the Monte Carlo method with small variance errors. We also show that the spatial correlation may lead to large errors if not being considered in the statistical analysis.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2008.918215</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos ; Correlation ; Correlation analysis ; Electric potential ; Gaussian processes ; Hermite polynomials ; Leakage current ; Mathematical models ; Network-on-a-chip ; Networks ; Polycarbonates ; Polynomials ; power delivery network ; Power grids ; Random variables ; spectral analysis ; Statistical analysis ; Stochastic processes ; Studies ; Voltage</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2008-08, Vol.55 (7), p.2064-2075</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5a446b304af0c9328381a6b8bac122fa1be918b6a00e65993be1c2bf819e23983</citedby><cites>FETCH-LOGICAL-c353t-5a446b304af0c9328381a6b8bac122fa1be918b6a00e65993be1c2bf819e23983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4447685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4447685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning Mi</creatorcontrib><creatorcontrib>Fan, J.</creatorcontrib><creatorcontrib>Tan, S.X-D.</creatorcontrib><creatorcontrib>Yici Cai</creatorcontrib><creatorcontrib>Xianlong Hong</creatorcontrib><title>Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. The new analysis is based on the Hermite polynomial chaos (PC) representation of random processes. Different from the existing Hermite PC based method for power grid analysis (Ghanta et al ., 2005), which models all the random variations as Gaussian processes without considering spatial correlation, the new method consider both wire variations and subthreshold leakage current variations, which are modeled as log-normal distribution random variables, on the power grid voltage variations. To consider the spatial correlation, we apply orthogonal decomposition to map the correlated random variables into independent variables. Our experiment results show that the new method is more accurate than the Gaussian-only Hermite PC method using the Taylor expansion method for analyzing leakage current variations. It is two orders of magnitude faster than the Monte Carlo method with small variance errors. We also show that the spatial correlation may lead to large errors if not being considered in the statistical analysis.</description><subject>Chaos</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Electric potential</subject><subject>Gaussian processes</subject><subject>Hermite polynomials</subject><subject>Leakage current</subject><subject>Mathematical models</subject><subject>Network-on-a-chip</subject><subject>Networks</subject><subject>Polycarbonates</subject><subject>Polynomials</subject><subject>power delivery network</subject><subject>Power grids</subject><subject>Random variables</subject><subject>spectral analysis</subject><subject>Statistical analysis</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Voltage</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kbtPwzAQxiMEEs8dicVigCnl_ErtEYWnVFGk8hgjJ1yK2zQudgrqyH-OSxEDA9Pd6X73Sd99SXJIoUcp6LOHfHTbYwCqp6liVG4kO1RKlYKCbHPVC50qztR2shvCBIBp4HQn-Rx1prOhs5VpyHlrmmWwgbiaDNs0f7Vzcu8-0JMLbOw7-iW5w-7D-WkguWuDfUFv2zEZuHHr_CwqDNBMzRhJvvAe2448GW-jfmTJs-1eyWgep8jlLu6b781-slWbJuDBT91LHq8uH_KbdDC8vs3PB2nFJe9SaYTISg7C1FDpaIQrarJSlaaijNWGlhiNl5kBwExqzUukFStrRTUyrhXfS07XunPv3hYYumJmQ4VNY1p0i1Co-CjRZ5xH8uRfkgvJASiL4PEfcOIWPj4xqmWcCaGliBCsocq7EDzWxdzbmfHLgkKxiq5YRVesoivW0cWTo_WJRcRfXAjRz5TkXx3Glfo</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Ning Mi</creator><creator>Fan, J.</creator><creator>Tan, S.X-D.</creator><creator>Yici Cai</creator><creator>Xianlong Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation</title><author>Ning Mi ; Fan, J. ; Tan, S.X-D. ; Yici Cai ; Xianlong Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5a446b304af0c9328381a6b8bac122fa1be918b6a00e65993be1c2bf819e23983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chaos</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Electric potential</topic><topic>Gaussian processes</topic><topic>Hermite polynomials</topic><topic>Leakage current</topic><topic>Mathematical models</topic><topic>Network-on-a-chip</topic><topic>Networks</topic><topic>Polycarbonates</topic><topic>Polynomials</topic><topic>power delivery network</topic><topic>Power grids</topic><topic>Random variables</topic><topic>spectral analysis</topic><topic>Statistical analysis</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning Mi</creatorcontrib><creatorcontrib>Fan, J.</creatorcontrib><creatorcontrib>Tan, S.X-D.</creatorcontrib><creatorcontrib>Yici Cai</creatorcontrib><creatorcontrib>Xianlong Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning Mi</au><au>Fan, J.</au><au>Tan, S.X-D.</au><au>Yici Cai</au><au>Xianlong Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>55</volume><issue>7</issue><spage>2064</spage><epage>2075</epage><pages>2064-2075</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. The new analysis is based on the Hermite polynomial chaos (PC) representation of random processes. Different from the existing Hermite PC based method for power grid analysis (Ghanta et al ., 2005), which models all the random variations as Gaussian processes without considering spatial correlation, the new method consider both wire variations and subthreshold leakage current variations, which are modeled as log-normal distribution random variables, on the power grid voltage variations. To consider the spatial correlation, we apply orthogonal decomposition to map the correlated random variables into independent variables. Our experiment results show that the new method is more accurate than the Gaussian-only Hermite PC method using the Taylor expansion method for analyzing leakage current variations. It is two orders of magnitude faster than the Monte Carlo method with small variance errors. We also show that the spatial correlation may lead to large errors if not being considered in the statistical analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2008.918215</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2008-08, Vol.55 (7), p.2064-2075 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_miscellaneous_34530012 |
source | IEEE Electronic Library (IEL) |
subjects | Chaos Correlation Correlation analysis Electric potential Gaussian processes Hermite polynomials Leakage current Mathematical models Network-on-a-chip Networks Polycarbonates Polynomials power delivery network Power grids Random variables spectral analysis Statistical analysis Stochastic processes Studies Voltage |
title | Statistical Analysis of On-Chip Power Delivery Networks Considering Lognormal Leakage Current Variations With Spatial Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Analysis%20of%20On-Chip%20Power%20Delivery%20Networks%20Considering%20Lognormal%20Leakage%20Current%20Variations%20With%20Spatial%20Correlation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Ning%20Mi&rft.date=2008-08-01&rft.volume=55&rft.issue=7&rft.spage=2064&rft.epage=2075&rft.pages=2064-2075&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2008.918215&rft_dat=%3Cproquest_RIE%3E34530012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863244954&rft_id=info:pmid/&rft_ieee_id=4447685&rfr_iscdi=true |