Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs

This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a ( d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d ( c > d), the d idle servers together take a vacation (or leave for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2009-10, Vol.33 (10), p.3949-3962
Hauptverfasser: Ke, Jau-Chuan, Lin, Chuen-Horng, Yang, Jyun-Yi, Zhang, Zhe George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3962
container_issue 10
container_start_page 3949
container_title Applied mathematical modelling
container_volume 33
creator Ke, Jau-Chuan
Lin, Chuen-Horng
Yang, Jyun-Yi
Zhang, Zhe George
description This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a ( d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d ( c > d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and ( d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy ( d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.
doi_str_mv 10.1016/j.apm.2009.01.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34529901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X09000225</els_id><sourcerecordid>34529901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-31536dd1d465fbb992dae0c32a5cdfe2530ba9cd922eb9f4743898aecff7814d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhnNQsFZ_gLc5iYK7nexHu8GTiF_Q0ouCt5BNJpiy3V2T3Ur_vSn17GkY5n2GmYexK44pRz6fbVLVb9MMUaTIU8TqhE0wx0UisPg8Y-chbBCxjN2E6XU_uK1q4AbMHehb2CmtBte10HeN03uwnQcF1rVuIKhHa8nDaraaafgeaST4ccMXjK2nxqm6IQjkd-QDqNaAp145Hy7YqVVNoMu_OmUfz0_vj6_Jcv3y9viwTHSeVUOS8zKfG8NNMS9tXQuRGUUYZ6rUxlJW5lgroY3IMqqFLRZFXolKkbZ2UfHC5FN2fdzb-y4eFwa5dUFT06iWujHIvCgzIZDHID8Gte9C8GRl76MEv5cc5UGh3MioUB4USuQyKozM_ZGh-MHOkZdBO2o1GedJD9J07h_6F8VSe9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34529901</pqid></control><display><type>article</type><title>Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ke, Jau-Chuan ; Lin, Chuen-Horng ; Yang, Jyun-Yi ; Zhang, Zhe George</creator><creatorcontrib>Ke, Jau-Chuan ; Lin, Chuen-Horng ; Yang, Jyun-Yi ; Zhang, Zhe George</creatorcontrib><description>This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a ( d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d ( c &gt; d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and ( d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy ( d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2009.01.008</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Average profit ; Direct search algorithm ; Markovian queue ; Server vacations ; Unreliable servers</subject><ispartof>Applied mathematical modelling, 2009-10, Vol.33 (10), p.3949-3962</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-31536dd1d465fbb992dae0c32a5cdfe2530ba9cd922eb9f4743898aecff7814d3</citedby><cites>FETCH-LOGICAL-c328t-31536dd1d465fbb992dae0c32a5cdfe2530ba9cd922eb9f4743898aecff7814d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2009.01.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ke, Jau-Chuan</creatorcontrib><creatorcontrib>Lin, Chuen-Horng</creatorcontrib><creatorcontrib>Yang, Jyun-Yi</creatorcontrib><creatorcontrib>Zhang, Zhe George</creatorcontrib><title>Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs</title><title>Applied mathematical modelling</title><description>This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a ( d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d ( c &gt; d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and ( d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy ( d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.</description><subject>Average profit</subject><subject>Direct search algorithm</subject><subject>Markovian queue</subject><subject>Server vacations</subject><subject>Unreliable servers</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhnNQsFZ_gLc5iYK7nexHu8GTiF_Q0ouCt5BNJpiy3V2T3Ur_vSn17GkY5n2GmYexK44pRz6fbVLVb9MMUaTIU8TqhE0wx0UisPg8Y-chbBCxjN2E6XU_uK1q4AbMHehb2CmtBte10HeN03uwnQcF1rVuIKhHa8nDaraaafgeaST4ccMXjK2nxqm6IQjkd-QDqNaAp145Hy7YqVVNoMu_OmUfz0_vj6_Jcv3y9viwTHSeVUOS8zKfG8NNMS9tXQuRGUUYZ6rUxlJW5lgroY3IMqqFLRZFXolKkbZ2UfHC5FN2fdzb-y4eFwa5dUFT06iWujHIvCgzIZDHID8Gte9C8GRl76MEv5cc5UGh3MioUB4USuQyKozM_ZGh-MHOkZdBO2o1GedJD9J07h_6F8VSe9Q</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Ke, Jau-Chuan</creator><creator>Lin, Chuen-Horng</creator><creator>Yang, Jyun-Yi</creator><creator>Zhang, Zhe George</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs</title><author>Ke, Jau-Chuan ; Lin, Chuen-Horng ; Yang, Jyun-Yi ; Zhang, Zhe George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-31536dd1d465fbb992dae0c32a5cdfe2530ba9cd922eb9f4743898aecff7814d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Average profit</topic><topic>Direct search algorithm</topic><topic>Markovian queue</topic><topic>Server vacations</topic><topic>Unreliable servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Jau-Chuan</creatorcontrib><creatorcontrib>Lin, Chuen-Horng</creatorcontrib><creatorcontrib>Yang, Jyun-Yi</creatorcontrib><creatorcontrib>Zhang, Zhe George</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Jau-Chuan</au><au>Lin, Chuen-Horng</au><au>Yang, Jyun-Yi</au><au>Zhang, Zhe George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>33</volume><issue>10</issue><spage>3949</spage><epage>3962</epage><pages>3949-3962</pages><issn>0307-904X</issn><abstract>This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a ( d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d ( c &gt; d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and ( d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy ( d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2009.01.008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2009-10, Vol.33 (10), p.3949-3962
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_34529901
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Average profit
Direct search algorithm
Markovian queue
Server vacations
Unreliable servers
title Optimal ( d, c) vacation policy for a finite buffer M/M/c queue with unreliable servers and repairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20(%20d,%20c)%20vacation%20policy%20for%20a%20finite%20buffer%20M/M/c%20queue%20with%20unreliable%20servers%20and%20repairs&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Ke,%20Jau-Chuan&rft.date=2009-10-01&rft.volume=33&rft.issue=10&rft.spage=3949&rft.epage=3962&rft.pages=3949-3962&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2009.01.008&rft_dat=%3Cproquest_cross%3E34529901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34529901&rft_id=info:pmid/&rft_els_id=S0307904X09000225&rfr_iscdi=true