Aerodynamic Contrails : Microphysics and Optical Properties

Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2009-02, Vol.66 (2), p.227-243
Hauptverfasser: KÄRCHER, B, MAYER, B, GIERENS, K, BURKHARDT, U, MANNSTEIN, H, CHATTERJEE, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2
container_start_page 227
container_title Journal of the atmospheric sciences
container_volume 66
creator KÄRCHER, B
MAYER, B
GIERENS, K
BURKHARDT, U
MANNSTEIN, H
CHATTERJEE, R
description Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they equilibrate most rapidly. Ambient temperature is the key determinant of nascent aerodynamic contrail properties. Only above ∼232 K do they become visible (but optically thin). These temperatures are at the high end of those prevailing at tropical upper tropospheric flight levels of subsonic aircraft. In colder midlatitude conditions, aerodynamic contrails stay invisible and the very small ice particles formed quickly evaporate when exposed to small subsaturations, explaining why the formation of these contrails is rarely observed. After formation, aerodynamic contrails develop into contrail cirrus if air is supersaturated with respect to ice. This type of anthropogenic ice cloud adds to contrail cirrus derived from jet exhaust contrails and may become particularly important in the future because air traffic is projected to increase significantly in tropical and subtropical regions. Regardless of whether aerodynamically induced ice formation leads to persistent contrail cirrus, cruising aircraft may act as sources of potent heterogeneous ice nuclei by preactivating the insoluble fraction in atmospheric particle populations. Aerodynamic contrails and aerodynamically induced preactivation should therefore be studied experimentally and with global models to explore their potential to induce climate change.
doi_str_mv 10.1175/2008JAS2768.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34529145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34529145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c90159c3bfd87d532a820c6fa30bff91926405ca5ba3d61c78efbe6f65849afb3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMoWKtH74uit63JZPOlp1L8pFJBPS_ZbIIp292abA_9701pERHEuQwMv3nMvIfQKcEjQgS7Aozl0_gVBJcjsocGhAHOccHVPhpgDJAXCuQhOopxjlOBIAN0M7ahq9etXniTTbq2D9o3MbvOnr0J3fJjHb2JmW7rbLbsvdFN9pLGNvTexmN04HQT7cmuD9H73e3b5CGfzu4fJ-NpbgqgfW4UJkwZWrlaippR0BKw4U5TXDmniAJeYGY0qzStOTFCWldZ7jiThdKuokN0udVdhu5zZWNfLnw0tml0a7tVLGnBQJGC_QsC5oIoCgk8_wXOu1Vo0xMlpOOUBAEbubM_KcoZFkSoBOVbKNkVY7CuXAa_0GFdElxuYil_xFKSxF_sRHVMdrqgW-Pj9xIQKKhUhH4BDVOKVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236507179</pqid></control><display><type>article</type><title>Aerodynamic Contrails : Microphysics and Optical Properties</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>KÄRCHER, B ; MAYER, B ; GIERENS, K ; BURKHARDT, U ; MANNSTEIN, H ; CHATTERJEE, R</creator><creatorcontrib>KÄRCHER, B ; MAYER, B ; GIERENS, K ; BURKHARDT, U ; MANNSTEIN, H ; CHATTERJEE, R</creatorcontrib><description>Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they equilibrate most rapidly. Ambient temperature is the key determinant of nascent aerodynamic contrail properties. Only above ∼232 K do they become visible (but optically thin). These temperatures are at the high end of those prevailing at tropical upper tropospheric flight levels of subsonic aircraft. In colder midlatitude conditions, aerodynamic contrails stay invisible and the very small ice particles formed quickly evaporate when exposed to small subsaturations, explaining why the formation of these contrails is rarely observed. After formation, aerodynamic contrails develop into contrail cirrus if air is supersaturated with respect to ice. This type of anthropogenic ice cloud adds to contrail cirrus derived from jet exhaust contrails and may become particularly important in the future because air traffic is projected to increase significantly in tropical and subtropical regions. Regardless of whether aerodynamically induced ice formation leads to persistent contrail cirrus, cruising aircraft may act as sources of potent heterogeneous ice nuclei by preactivating the insoluble fraction in atmospheric particle populations. Aerodynamic contrails and aerodynamically induced preactivation should therefore be studied experimentally and with global models to explore their potential to induce climate change.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/2008JAS2768.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Adiabatic ; Aerodynamics ; Aerosol particles ; Aerosols ; Air ; Air flow ; Aircraft ; Aircraft aerodynamics ; Airplane engines ; Ambient temperature ; Anthropogenic factors ; Atmospheric models ; Aviation ; Carbon dioxide ; Chemicals ; Climate change ; Clouds ; Contrails ; Cooling ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Ice clouds ; Ice formation ; Ice nuclei ; Ice particles ; Jet engines ; Jet exhaust ; Meteorology ; Microphysics ; Optical properties ; Ozone ; Physics of the high neutral atmosphere ; Remote sensing ; Subsonic aircraft ; Wings ; Wings (aircraft)</subject><ispartof>Journal of the atmospheric sciences, 2009-02, Vol.66 (2), p.227-243</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Meteorological Society Feb 2009</rights><rights>Copyright American Meteorological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c90159c3bfd87d532a820c6fa30bff91926405ca5ba3d61c78efbe6f65849afb3</citedby><cites>FETCH-LOGICAL-c423t-c90159c3bfd87d532a820c6fa30bff91926405ca5ba3d61c78efbe6f65849afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21243891$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KÄRCHER, B</creatorcontrib><creatorcontrib>MAYER, B</creatorcontrib><creatorcontrib>GIERENS, K</creatorcontrib><creatorcontrib>BURKHARDT, U</creatorcontrib><creatorcontrib>MANNSTEIN, H</creatorcontrib><creatorcontrib>CHATTERJEE, R</creatorcontrib><title>Aerodynamic Contrails : Microphysics and Optical Properties</title><title>Journal of the atmospheric sciences</title><description>Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they equilibrate most rapidly. Ambient temperature is the key determinant of nascent aerodynamic contrail properties. Only above ∼232 K do they become visible (but optically thin). These temperatures are at the high end of those prevailing at tropical upper tropospheric flight levels of subsonic aircraft. In colder midlatitude conditions, aerodynamic contrails stay invisible and the very small ice particles formed quickly evaporate when exposed to small subsaturations, explaining why the formation of these contrails is rarely observed. After formation, aerodynamic contrails develop into contrail cirrus if air is supersaturated with respect to ice. This type of anthropogenic ice cloud adds to contrail cirrus derived from jet exhaust contrails and may become particularly important in the future because air traffic is projected to increase significantly in tropical and subtropical regions. Regardless of whether aerodynamically induced ice formation leads to persistent contrail cirrus, cruising aircraft may act as sources of potent heterogeneous ice nuclei by preactivating the insoluble fraction in atmospheric particle populations. Aerodynamic contrails and aerodynamically induced preactivation should therefore be studied experimentally and with global models to explore their potential to induce climate change.</description><subject>Adiabatic</subject><subject>Aerodynamics</subject><subject>Aerosol particles</subject><subject>Aerosols</subject><subject>Air</subject><subject>Air flow</subject><subject>Aircraft</subject><subject>Aircraft aerodynamics</subject><subject>Airplane engines</subject><subject>Ambient temperature</subject><subject>Anthropogenic factors</subject><subject>Atmospheric models</subject><subject>Aviation</subject><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Climate change</subject><subject>Clouds</subject><subject>Contrails</subject><subject>Cooling</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Ice clouds</subject><subject>Ice formation</subject><subject>Ice nuclei</subject><subject>Ice particles</subject><subject>Jet engines</subject><subject>Jet exhaust</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Optical properties</subject><subject>Ozone</subject><subject>Physics of the high neutral atmosphere</subject><subject>Remote sensing</subject><subject>Subsonic aircraft</subject><subject>Wings</subject><subject>Wings (aircraft)</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1LAzEQxYMoWKtH74uit63JZPOlp1L8pFJBPS_ZbIIp292abA_9701pERHEuQwMv3nMvIfQKcEjQgS7Aozl0_gVBJcjsocGhAHOccHVPhpgDJAXCuQhOopxjlOBIAN0M7ahq9etXniTTbq2D9o3MbvOnr0J3fJjHb2JmW7rbLbsvdFN9pLGNvTexmN04HQT7cmuD9H73e3b5CGfzu4fJ-NpbgqgfW4UJkwZWrlaippR0BKw4U5TXDmniAJeYGY0qzStOTFCWldZ7jiThdKuokN0udVdhu5zZWNfLnw0tml0a7tVLGnBQJGC_QsC5oIoCgk8_wXOu1Vo0xMlpOOUBAEbubM_KcoZFkSoBOVbKNkVY7CuXAa_0GFdElxuYil_xFKSxF_sRHVMdrqgW-Pj9xIQKKhUhH4BDVOKVw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>KÄRCHER, B</creator><creator>MAYER, B</creator><creator>GIERENS, K</creator><creator>BURKHARDT, U</creator><creator>MANNSTEIN, H</creator><creator>CHATTERJEE, R</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20090201</creationdate><title>Aerodynamic Contrails : Microphysics and Optical Properties</title><author>KÄRCHER, B ; MAYER, B ; GIERENS, K ; BURKHARDT, U ; MANNSTEIN, H ; CHATTERJEE, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c90159c3bfd87d532a820c6fa30bff91926405ca5ba3d61c78efbe6f65849afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adiabatic</topic><topic>Aerodynamics</topic><topic>Aerosol particles</topic><topic>Aerosols</topic><topic>Air</topic><topic>Air flow</topic><topic>Aircraft</topic><topic>Aircraft aerodynamics</topic><topic>Airplane engines</topic><topic>Ambient temperature</topic><topic>Anthropogenic factors</topic><topic>Atmospheric models</topic><topic>Aviation</topic><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Climate change</topic><topic>Clouds</topic><topic>Contrails</topic><topic>Cooling</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Ice clouds</topic><topic>Ice formation</topic><topic>Ice nuclei</topic><topic>Ice particles</topic><topic>Jet engines</topic><topic>Jet exhaust</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Optical properties</topic><topic>Ozone</topic><topic>Physics of the high neutral atmosphere</topic><topic>Remote sensing</topic><topic>Subsonic aircraft</topic><topic>Wings</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KÄRCHER, B</creatorcontrib><creatorcontrib>MAYER, B</creatorcontrib><creatorcontrib>GIERENS, K</creatorcontrib><creatorcontrib>BURKHARDT, U</creatorcontrib><creatorcontrib>MANNSTEIN, H</creatorcontrib><creatorcontrib>CHATTERJEE, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KÄRCHER, B</au><au>MAYER, B</au><au>GIERENS, K</au><au>BURKHARDT, U</au><au>MANNSTEIN, H</au><au>CHATTERJEE, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic Contrails : Microphysics and Optical Properties</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>66</volume><issue>2</issue><spage>227</spage><epage>243</epage><pages>227-243</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they equilibrate most rapidly. Ambient temperature is the key determinant of nascent aerodynamic contrail properties. Only above ∼232 K do they become visible (but optically thin). These temperatures are at the high end of those prevailing at tropical upper tropospheric flight levels of subsonic aircraft. In colder midlatitude conditions, aerodynamic contrails stay invisible and the very small ice particles formed quickly evaporate when exposed to small subsaturations, explaining why the formation of these contrails is rarely observed. After formation, aerodynamic contrails develop into contrail cirrus if air is supersaturated with respect to ice. This type of anthropogenic ice cloud adds to contrail cirrus derived from jet exhaust contrails and may become particularly important in the future because air traffic is projected to increase significantly in tropical and subtropical regions. Regardless of whether aerodynamically induced ice formation leads to persistent contrail cirrus, cruising aircraft may act as sources of potent heterogeneous ice nuclei by preactivating the insoluble fraction in atmospheric particle populations. Aerodynamic contrails and aerodynamically induced preactivation should therefore be studied experimentally and with global models to explore their potential to induce climate change.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2008JAS2768.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2009-02, Vol.66 (2), p.227-243
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_34529145
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adiabatic
Aerodynamics
Aerosol particles
Aerosols
Air
Air flow
Aircraft
Aircraft aerodynamics
Airplane engines
Ambient temperature
Anthropogenic factors
Atmospheric models
Aviation
Carbon dioxide
Chemicals
Climate change
Clouds
Contrails
Cooling
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid dynamics
Ice clouds
Ice formation
Ice nuclei
Ice particles
Jet engines
Jet exhaust
Meteorology
Microphysics
Optical properties
Ozone
Physics of the high neutral atmosphere
Remote sensing
Subsonic aircraft
Wings
Wings (aircraft)
title Aerodynamic Contrails : Microphysics and Optical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20Contrails%20:%20Microphysics%20and%20Optical%20Properties&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=K%C3%84RCHER,%20B&rft.date=2009-02-01&rft.volume=66&rft.issue=2&rft.spage=227&rft.epage=243&rft.pages=227-243&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/2008JAS2768.1&rft_dat=%3Cproquest_cross%3E34529145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236507179&rft_id=info:pmid/&rfr_iscdi=true