Using noise inconsistencies for blind image forensics
A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire auth...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2009-09, Vol.27 (10), p.1497-1503 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1503 |
---|---|
container_issue | 10 |
container_start_page | 1497 |
container_title | Image and vision computing |
container_volume | 27 |
creator | Mahdian, Babak Saic, Stanislav |
description | A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well. |
doi_str_mv | 10.1016/j.imavis.2009.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34529028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885609000146</els_id><sourcerecordid>34529028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDTj0xK3FSZsmvSChiX_SJC7sHDWpO2Xq0hF3k_j2ZCpnTrbl5ye_H2P3HAoOvH7cFX7fnjwVAqApQBQA_IItuFYi17zUl2wBok69lvU1uyHaAYAC1SyY3JAP2yyMnjDzwY2BPE0YnEfK-jFmdvChy5L_Fs8zpr2jW3bVtwPh3V9dss3ry9fqPV9_vn2snte5K0s15aoSukdsVSlsL1E0tZW2VI3oVWcri1ZpXnfaVbqWjdLCyUq2lRYWoZPQdOWSPcy-hzh-H5Ems_fkcBjagOORTFlJ0YDQSVjNQhdHooi9OcT0c_wxHMyZkdmZmZE5MzIgTGKUzp7mM0whTh6joRQ8OOx8RDeZbvT_G_wCzQxxkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34529028</pqid></control><display><type>article</type><title>Using noise inconsistencies for blind image forensics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mahdian, Babak ; Saic, Stanislav</creator><creatorcontrib>Mahdian, Babak ; Saic, Stanislav</creatorcontrib><description>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2009.02.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Digital forgery ; Image forensics ; Image segmentation ; Image tampering ; Noise inconsistency</subject><ispartof>Image and vision computing, 2009-09, Vol.27 (10), p.1497-1503</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</citedby><cites>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imavis.2009.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mahdian, Babak</creatorcontrib><creatorcontrib>Saic, Stanislav</creatorcontrib><title>Using noise inconsistencies for blind image forensics</title><title>Image and vision computing</title><description>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</description><subject>Digital forgery</subject><subject>Image forensics</subject><subject>Image segmentation</subject><subject>Image tampering</subject><subject>Noise inconsistency</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDTj0xK3FSZsmvSChiX_SJC7sHDWpO2Xq0hF3k_j2ZCpnTrbl5ye_H2P3HAoOvH7cFX7fnjwVAqApQBQA_IItuFYi17zUl2wBok69lvU1uyHaAYAC1SyY3JAP2yyMnjDzwY2BPE0YnEfK-jFmdvChy5L_Fs8zpr2jW3bVtwPh3V9dss3ry9fqPV9_vn2snte5K0s15aoSukdsVSlsL1E0tZW2VI3oVWcri1ZpXnfaVbqWjdLCyUq2lRYWoZPQdOWSPcy-hzh-H5Ems_fkcBjagOORTFlJ0YDQSVjNQhdHooi9OcT0c_wxHMyZkdmZmZE5MzIgTGKUzp7mM0whTh6joRQ8OOx8RDeZbvT_G_wCzQxxkQ</recordid><startdate>20090902</startdate><enddate>20090902</enddate><creator>Mahdian, Babak</creator><creator>Saic, Stanislav</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090902</creationdate><title>Using noise inconsistencies for blind image forensics</title><author>Mahdian, Babak ; Saic, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Digital forgery</topic><topic>Image forensics</topic><topic>Image segmentation</topic><topic>Image tampering</topic><topic>Noise inconsistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdian, Babak</creatorcontrib><creatorcontrib>Saic, Stanislav</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdian, Babak</au><au>Saic, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using noise inconsistencies for blind image forensics</atitle><jtitle>Image and vision computing</jtitle><date>2009-09-02</date><risdate>2009</risdate><volume>27</volume><issue>10</issue><spage>1497</spage><epage>1503</epage><pages>1497-1503</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2009.02.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2009-09, Vol.27 (10), p.1497-1503 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_34529028 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Digital forgery Image forensics Image segmentation Image tampering Noise inconsistency |
title | Using noise inconsistencies for blind image forensics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20noise%20inconsistencies%20for%20blind%20image%20forensics&rft.jtitle=Image%20and%20vision%20computing&rft.au=Mahdian,%20Babak&rft.date=2009-09-02&rft.volume=27&rft.issue=10&rft.spage=1497&rft.epage=1503&rft.pages=1497-1503&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2009.02.001&rft_dat=%3Cproquest_cross%3E34529028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34529028&rft_id=info:pmid/&rft_els_id=S0262885609000146&rfr_iscdi=true |