Using noise inconsistencies for blind image forensics

A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire auth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2009-09, Vol.27 (10), p.1497-1503
Hauptverfasser: Mahdian, Babak, Saic, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1503
container_issue 10
container_start_page 1497
container_title Image and vision computing
container_volume 27
creator Mahdian, Babak
Saic, Stanislav
description A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.
doi_str_mv 10.1016/j.imavis.2009.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34529028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885609000146</els_id><sourcerecordid>34529028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDTj0xK3FSZsmvSChiX_SJC7sHDWpO2Xq0hF3k_j2ZCpnTrbl5ye_H2P3HAoOvH7cFX7fnjwVAqApQBQA_IItuFYi17zUl2wBok69lvU1uyHaAYAC1SyY3JAP2yyMnjDzwY2BPE0YnEfK-jFmdvChy5L_Fs8zpr2jW3bVtwPh3V9dss3ry9fqPV9_vn2snte5K0s15aoSukdsVSlsL1E0tZW2VI3oVWcri1ZpXnfaVbqWjdLCyUq2lRYWoZPQdOWSPcy-hzh-H5Ems_fkcBjagOORTFlJ0YDQSVjNQhdHooi9OcT0c_wxHMyZkdmZmZE5MzIgTGKUzp7mM0whTh6joRQ8OOx8RDeZbvT_G_wCzQxxkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34529028</pqid></control><display><type>article</type><title>Using noise inconsistencies for blind image forensics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mahdian, Babak ; Saic, Stanislav</creator><creatorcontrib>Mahdian, Babak ; Saic, Stanislav</creatorcontrib><description>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2009.02.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Digital forgery ; Image forensics ; Image segmentation ; Image tampering ; Noise inconsistency</subject><ispartof>Image and vision computing, 2009-09, Vol.27 (10), p.1497-1503</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</citedby><cites>FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imavis.2009.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mahdian, Babak</creatorcontrib><creatorcontrib>Saic, Stanislav</creatorcontrib><title>Using noise inconsistencies for blind image forensics</title><title>Image and vision computing</title><description>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</description><subject>Digital forgery</subject><subject>Image forensics</subject><subject>Image segmentation</subject><subject>Image tampering</subject><subject>Noise inconsistency</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDTj0xK3FSZsmvSChiX_SJC7sHDWpO2Xq0hF3k_j2ZCpnTrbl5ye_H2P3HAoOvH7cFX7fnjwVAqApQBQA_IItuFYi17zUl2wBok69lvU1uyHaAYAC1SyY3JAP2yyMnjDzwY2BPE0YnEfK-jFmdvChy5L_Fs8zpr2jW3bVtwPh3V9dss3ry9fqPV9_vn2snte5K0s15aoSukdsVSlsL1E0tZW2VI3oVWcri1ZpXnfaVbqWjdLCyUq2lRYWoZPQdOWSPcy-hzh-H5Ems_fkcBjagOORTFlJ0YDQSVjNQhdHooi9OcT0c_wxHMyZkdmZmZE5MzIgTGKUzp7mM0whTh6joRQ8OOx8RDeZbvT_G_wCzQxxkQ</recordid><startdate>20090902</startdate><enddate>20090902</enddate><creator>Mahdian, Babak</creator><creator>Saic, Stanislav</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090902</creationdate><title>Using noise inconsistencies for blind image forensics</title><author>Mahdian, Babak ; Saic, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7428feea732bf5e296b5b3792f7db4beb7816d8c48659782c545a482be0d509d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Digital forgery</topic><topic>Image forensics</topic><topic>Image segmentation</topic><topic>Image tampering</topic><topic>Noise inconsistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdian, Babak</creatorcontrib><creatorcontrib>Saic, Stanislav</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdian, Babak</au><au>Saic, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using noise inconsistencies for blind image forensics</atitle><jtitle>Image and vision computing</jtitle><date>2009-09-02</date><risdate>2009</risdate><volume>27</volume><issue>10</issue><spage>1497</spage><epage>1503</epage><pages>1497-1503</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>A commonly used tool to conceal the traces of tampering is the addition of locally random noise to the altered image regions. The noise degradation is the main cause of failure of many active or passive image forgery detection methods. Typically, the amount of noise is uniform across the entire authentic image. Adding locally random noise may cause inconsistencies in the image’s noise. Therefore, the detection of various noise levels in an image may signify tampering. In this paper, we propose a novel method capable of dividing an investigated image into various partitions with homogenous noise levels. In other words, we introduce a segmentation method detecting changes in noise level. We assume the additive white Gaussian noise. Several examples are shown to demonstrate the proposed method’s output. An extensive quantitative measure of the efficiency of the noise estimation part as a function of different noise standard deviations, region sizes and various JPEG compression qualities is proposed as well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2009.02.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2009-09, Vol.27 (10), p.1497-1503
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_34529028
source Elsevier ScienceDirect Journals Complete
subjects Digital forgery
Image forensics
Image segmentation
Image tampering
Noise inconsistency
title Using noise inconsistencies for blind image forensics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20noise%20inconsistencies%20for%20blind%20image%20forensics&rft.jtitle=Image%20and%20vision%20computing&rft.au=Mahdian,%20Babak&rft.date=2009-09-02&rft.volume=27&rft.issue=10&rft.spage=1497&rft.epage=1503&rft.pages=1497-1503&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2009.02.001&rft_dat=%3Cproquest_cross%3E34529028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34529028&rft_id=info:pmid/&rft_els_id=S0262885609000146&rfr_iscdi=true