Opposition-Based Differential Evolution

Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper presents a novel algorithm to accelerate the diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2008-02, Vol.12 (1), p.64-79
Hauptverfasser: Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 64
container_title IEEE transactions on evolutionary computation
container_volume 12
creator Rahnamayan, S.
Tizhoosh, H.R.
Salama, M.M.A.
description Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper presents a novel algorithm to accelerate the differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based learning (OBL) for population initialization and also for generation jumping. In this work, opposite numbers have been utilized to improve the convergence rate of DE. A comprehensive set of 58 complex benchmark functions including a wide range of dimensions is employed for experimental verification. The influence of dimensionality, population size, jumping rate, and various mutation strategies are also investigated. Additionally, the contribution of opposite numbers is empirically verified. We also provide a comparison of ODE to fuzzy adaptive DE (FADE). Experimental results confirm that the ODE outperforms the original DE and FADE in terms of convergence speed and solution accuracy.
doi_str_mv 10.1109/TEVC.2007.894200
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34528232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358759</ieee_id><sourcerecordid>875089522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-c99e9f930a158d1bff627a18a836902f77d8cce82acce381c6f18a2d2f01c8643</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3wUsRtKetk69NctRaP6DQSxVvIWYT2LLdXZOu4H9vli09ePAyM_B-M8x7CF1imGEM6m69eJ_PCICYScVSP0IjrBjOAEh-nGaQKhNCfpyisxg3AJhxrEZoumrbJpa7sqmzBxNdMXksvXfB1bvSVJPFd1N1vXiOTryporvY9zF6e1qs5y_ZcvX8Or9fZpYRvsusUk55RcFgLgv86X1OhMHSSJorIF6IQlrrJDGpUolt7pNICuIBW5kzOkbT4W4bmq_OxZ3eltG6qjK1a7qopeDJCSckkbf_kpRxIgntwes_4KbpQp1caJm-E1gAJAgGyIYmxuC8bkO5NeFHY9B9wLoPWPcB6yHgtHKzv2uiNZUPprZlPOwlhAmu8sRdDVzpnDvIjPLkRdFf9iSB3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862771700</pqid></control><display><type>article</type><title>Opposition-Based Differential Evolution</title><source>IEEE Electronic Library (IEL)</source><creator>Rahnamayan, S. ; Tizhoosh, H.R. ; Salama, M.M.A.</creator><creatorcontrib>Rahnamayan, S. ; Tizhoosh, H.R. ; Salama, M.M.A.</creatorcontrib><description>Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper presents a novel algorithm to accelerate the differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based learning (OBL) for population initialization and also for generation jumping. In this work, opposite numbers have been utilized to improve the convergence rate of DE. A comprehensive set of 58 complex benchmark functions including a wide range of dimensions is employed for experimental verification. The influence of dimensionality, population size, jumping rate, and various mutation strategies are also investigated. Additionally, the contribution of opposite numbers is empirically verified. We also provide a comparison of ODE to fuzzy adaptive DE (FADE). Experimental results confirm that the ODE outperforms the original DE and FADE in terms of convergence speed and solution accuracy.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2007.894200</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Convergence ; Design engineering ; Differential evolution (DE) ; Evolution ; Evolutionary ; Evolutionary algorithms ; Exact sciences and technology ; Fuzzy ; Genetic mutations ; Jumping ; Laboratories ; Machine intelligence ; Mathematical models ; opposite numbers ; opposition-based learning ; optimiztion ; Pattern analysis ; Robust control ; System analysis and design ; Systems engineering and theory</subject><ispartof>IEEE transactions on evolutionary computation, 2008-02, Vol.12 (1), p.64-79</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-c99e9f930a158d1bff627a18a836902f77d8cce82acce381c6f18a2d2f01c8643</citedby><cites>FETCH-LOGICAL-c425t-c99e9f930a158d1bff627a18a836902f77d8cce82acce381c6f18a2d2f01c8643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20047596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahnamayan, S.</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><creatorcontrib>Salama, M.M.A.</creatorcontrib><title>Opposition-Based Differential Evolution</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper presents a novel algorithm to accelerate the differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based learning (OBL) for population initialization and also for generation jumping. In this work, opposite numbers have been utilized to improve the convergence rate of DE. A comprehensive set of 58 complex benchmark functions including a wide range of dimensions is employed for experimental verification. The influence of dimensionality, population size, jumping rate, and various mutation strategies are also investigated. Additionally, the contribution of opposite numbers is empirically verified. We also provide a comparison of ODE to fuzzy adaptive DE (FADE). Experimental results confirm that the ODE outperforms the original DE and FADE in terms of convergence speed and solution accuracy.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Differential evolution (DE)</subject><subject>Evolution</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Genetic mutations</subject><subject>Jumping</subject><subject>Laboratories</subject><subject>Machine intelligence</subject><subject>Mathematical models</subject><subject>opposite numbers</subject><subject>opposition-based learning</subject><subject>optimiztion</subject><subject>Pattern analysis</subject><subject>Robust control</subject><subject>System analysis and design</subject><subject>Systems engineering and theory</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3wUsRtKetk69NctRaP6DQSxVvIWYT2LLdXZOu4H9vli09ePAyM_B-M8x7CF1imGEM6m69eJ_PCICYScVSP0IjrBjOAEh-nGaQKhNCfpyisxg3AJhxrEZoumrbJpa7sqmzBxNdMXksvXfB1bvSVJPFd1N1vXiOTryporvY9zF6e1qs5y_ZcvX8Or9fZpYRvsusUk55RcFgLgv86X1OhMHSSJorIF6IQlrrJDGpUolt7pNICuIBW5kzOkbT4W4bmq_OxZ3eltG6qjK1a7qopeDJCSckkbf_kpRxIgntwes_4KbpQp1caJm-E1gAJAgGyIYmxuC8bkO5NeFHY9B9wLoPWPcB6yHgtHKzv2uiNZUPprZlPOwlhAmu8sRdDVzpnDvIjPLkRdFf9iSB3A</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Rahnamayan, S.</creator><creator>Tizhoosh, H.R.</creator><creator>Salama, M.M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080201</creationdate><title>Opposition-Based Differential Evolution</title><author>Rahnamayan, S. ; Tizhoosh, H.R. ; Salama, M.M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-c99e9f930a158d1bff627a18a836902f77d8cce82acce381c6f18a2d2f01c8643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Differential evolution (DE)</topic><topic>Evolution</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Genetic mutations</topic><topic>Jumping</topic><topic>Laboratories</topic><topic>Machine intelligence</topic><topic>Mathematical models</topic><topic>opposite numbers</topic><topic>opposition-based learning</topic><topic>optimiztion</topic><topic>Pattern analysis</topic><topic>Robust control</topic><topic>System analysis and design</topic><topic>Systems engineering and theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahnamayan, S.</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><creatorcontrib>Salama, M.M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahnamayan, S.</au><au>Tizhoosh, H.R.</au><au>Salama, M.M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposition-Based Differential Evolution</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>64</spage><epage>79</epage><pages>64-79</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper presents a novel algorithm to accelerate the differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based learning (OBL) for population initialization and also for generation jumping. In this work, opposite numbers have been utilized to improve the convergence rate of DE. A comprehensive set of 58 complex benchmark functions including a wide range of dimensions is employed for experimental verification. The influence of dimensionality, population size, jumping rate, and various mutation strategies are also investigated. Additionally, the contribution of opposite numbers is empirically verified. We also provide a comparison of ODE to fuzzy adaptive DE (FADE). Experimental results confirm that the ODE outperforms the original DE and FADE in terms of convergence speed and solution accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2007.894200</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2008-02, Vol.12 (1), p.64-79
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_34528232
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Convergence
Design engineering
Differential evolution (DE)
Evolution
Evolutionary
Evolutionary algorithms
Exact sciences and technology
Fuzzy
Genetic mutations
Jumping
Laboratories
Machine intelligence
Mathematical models
opposite numbers
opposition-based learning
optimiztion
Pattern analysis
Robust control
System analysis and design
Systems engineering and theory
title Opposition-Based Differential Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposition-Based%20Differential%20Evolution&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Rahnamayan,%20S.&rft.date=2008-02-01&rft.volume=12&rft.issue=1&rft.spage=64&rft.epage=79&rft.pages=64-79&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2007.894200&rft_dat=%3Cproquest_RIE%3E875089522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862771700&rft_id=info:pmid/&rft_ieee_id=4358759&rfr_iscdi=true