Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire
Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the generalized Pocklington integro-differential equation using two approaches: the method of moments (MoM) with short range pulse basis functions via the point matching scheme and the G...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2007-06, Vol.55 (6), p.1856-1861 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1861 |
---|---|
container_issue | 6 |
container_start_page | 1856 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 55 |
creator | Alyones, S. Bruce, C.W. Buin, A.K. |
description | Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the generalized Pocklington integro-differential equation using two approaches: the method of moments (MoM) with short range pulse basis functions via the point matching scheme and the Galerkin method with long range basis functions (Legendre polynomials modified to satisfy the boundary conditions of the problem). A new development included in the computations reported here involves a more accurate rendering of wires with lower aspect (length-to-diameter) ratios. Both methods converge to the same answer and satisfy the energy balance to within one percent. A comparison is made with an existing analytical theory by Waterman and Pedersen. This theory solves a more approximate form of the Pocklington equation and is found to have anomalies for some cases. The solutions of this paper agree with the analytical theory for very thin wires, and the results yield a small but significant amplitude and resonance shift for lower aspect ratios. All three solutions are in agreement with the numerous available experimental results to within the experimental errors. The numerical approaches provide a complete direct solution to the problem and remove all the anomalies which occurred in the analytical theory by Waterman and Pedersen. |
doi_str_mv | 10.1109/TAP.2007.898579 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34527417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4232606</ieee_id><sourcerecordid>34527417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-754625260abfdd2e7277d314eabe2fd6f779a9e395a803806d518bd801261e563</originalsourceid><addsrcrecordid>eNp9kctrFEEQxgdRcI2ePXhpBPU0m34_jmFJVMgLsqK3pqenJtthZjrp7hHy39vLBgUPORVF_b4qvvqa5j3Ba0KwOd6eXK8pxmqtjRbKvGhWRAjdUkrJy2aFMdGtofLX6-ZNzne15ZrzVbO7XCZIwbsRXUDZxT6jISZ0E8ffYb5FZQfoOsVuhAnFAZ2O4EuKk7udoQSPbrwrpcor2T0ih7a7MKOzMIcCaBPnfvFlP_sZErxtXg1uzPDuqR41P85Ot5tv7fnV1--bk_PWM01KqwSXVFCJXTf0PQVFleoZ4eA6oEMvB6WMM8CMcBozjWUviO56jQmVBIRkR82Xw977FB8WyMVOIXsYRzdDXLLVRhJtFOOV_PwsybigihNVwY__gXdxSXN1YQ2hlClG93ePD5BPMecEg71PYXLp0RJs9wHZGpDdB2QPAVXFp6e1Ltf_D8nNPuR_Mq159YQr9-HABQD4O-a0XsWS_QGRlJgD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912237326</pqid></control><display><type>article</type><title>Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire</title><source>IEEE Electronic Library (IEL)</source><creator>Alyones, S. ; Bruce, C.W. ; Buin, A.K.</creator><creatorcontrib>Alyones, S. ; Bruce, C.W. ; Buin, A.K.</creatorcontrib><description>Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the generalized Pocklington integro-differential equation using two approaches: the method of moments (MoM) with short range pulse basis functions via the point matching scheme and the Galerkin method with long range basis functions (Legendre polynomials modified to satisfy the boundary conditions of the problem). A new development included in the computations reported here involves a more accurate rendering of wires with lower aspect (length-to-diameter) ratios. Both methods converge to the same answer and satisfy the energy balance to within one percent. A comparison is made with an existing analytical theory by Waterman and Pedersen. This theory solves a more approximate form of the Pocklington equation and is found to have anomalies for some cases. The solutions of this paper agree with the analytical theory for very thin wires, and the results yield a small but significant amplitude and resonance shift for lower aspect ratios. All three solutions are in agreement with the numerous available experimental results to within the experimental errors. The numerical approaches provide a complete direct solution to the problem and remove all the anomalies which occurred in the analytical theory by Waterman and Pedersen.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2007.898579</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; analytical theory ; Anomalies ; Applied classical electromagnetism ; Applied sciences ; Basis functions ; Computation ; Conduction ; Conductivity ; Diffraction, scattering, reflection ; Electromagnetic scattering ; Electromagnetic transients ; Electromagnetic wave absorption ; Electromagnetic wave propagation, radiowave propagation ; electromagnetics ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; fibers ; Fundamental areas of phenomenology (including applications) ; Galerkin methods ; Integral equations ; Integrodifferential equations ; Mathematical analysis ; Mathematical models ; Moment methods ; numerical methods ; Physics ; Radiocommunications ; Radiowave propagation ; Resonance ; scattering ; Studies ; Telecommunications ; Telecommunications and information theory ; Wire ; Wires</subject><ispartof>IEEE transactions on antennas and propagation, 2007-06, Vol.55 (6), p.1856-1861</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-754625260abfdd2e7277d314eabe2fd6f779a9e395a803806d518bd801261e563</citedby><cites>FETCH-LOGICAL-c381t-754625260abfdd2e7277d314eabe2fd6f779a9e395a803806d518bd801261e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4232606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4232606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18842610$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alyones, S.</creatorcontrib><creatorcontrib>Bruce, C.W.</creatorcontrib><creatorcontrib>Buin, A.K.</creatorcontrib><title>Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the generalized Pocklington integro-differential equation using two approaches: the method of moments (MoM) with short range pulse basis functions via the point matching scheme and the Galerkin method with long range basis functions (Legendre polynomials modified to satisfy the boundary conditions of the problem). A new development included in the computations reported here involves a more accurate rendering of wires with lower aspect (length-to-diameter) ratios. Both methods converge to the same answer and satisfy the energy balance to within one percent. A comparison is made with an existing analytical theory by Waterman and Pedersen. This theory solves a more approximate form of the Pocklington equation and is found to have anomalies for some cases. The solutions of this paper agree with the analytical theory for very thin wires, and the results yield a small but significant amplitude and resonance shift for lower aspect ratios. All three solutions are in agreement with the numerous available experimental results to within the experimental errors. The numerical approaches provide a complete direct solution to the problem and remove all the anomalies which occurred in the analytical theory by Waterman and Pedersen.</description><subject>Absorption</subject><subject>analytical theory</subject><subject>Anomalies</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Basis functions</subject><subject>Computation</subject><subject>Conduction</subject><subject>Conductivity</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic transients</subject><subject>Electromagnetic wave absorption</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>electromagnetics</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>fibers</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin methods</subject><subject>Integral equations</subject><subject>Integrodifferential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Moment methods</subject><subject>numerical methods</subject><subject>Physics</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Resonance</subject><subject>scattering</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Wire</subject><subject>Wires</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctrFEEQxgdRcI2ePXhpBPU0m34_jmFJVMgLsqK3pqenJtthZjrp7hHy39vLBgUPORVF_b4qvvqa5j3Ba0KwOd6eXK8pxmqtjRbKvGhWRAjdUkrJy2aFMdGtofLX6-ZNzne15ZrzVbO7XCZIwbsRXUDZxT6jISZ0E8ffYb5FZQfoOsVuhAnFAZ2O4EuKk7udoQSPbrwrpcor2T0ih7a7MKOzMIcCaBPnfvFlP_sZErxtXg1uzPDuqR41P85Ot5tv7fnV1--bk_PWM01KqwSXVFCJXTf0PQVFleoZ4eA6oEMvB6WMM8CMcBozjWUviO56jQmVBIRkR82Xw977FB8WyMVOIXsYRzdDXLLVRhJtFOOV_PwsybigihNVwY__gXdxSXN1YQ2hlClG93ePD5BPMecEg71PYXLp0RJs9wHZGpDdB2QPAVXFp6e1Ltf_D8nNPuR_Mq159YQr9-HABQD4O-a0XsWS_QGRlJgD</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Alyones, S.</creator><creator>Bruce, C.W.</creator><creator>Buin, A.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire</title><author>Alyones, S. ; Bruce, C.W. ; Buin, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-754625260abfdd2e7277d314eabe2fd6f779a9e395a803806d518bd801261e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>analytical theory</topic><topic>Anomalies</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Basis functions</topic><topic>Computation</topic><topic>Conduction</topic><topic>Conductivity</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic transients</topic><topic>Electromagnetic wave absorption</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>electromagnetics</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>fibers</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin methods</topic><topic>Integral equations</topic><topic>Integrodifferential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Moment methods</topic><topic>numerical methods</topic><topic>Physics</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Resonance</topic><topic>scattering</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Wire</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alyones, S.</creatorcontrib><creatorcontrib>Bruce, C.W.</creatorcontrib><creatorcontrib>Buin, A.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alyones, S.</au><au>Bruce, C.W.</au><au>Buin, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>55</volume><issue>6</issue><spage>1856</spage><epage>1861</epage><pages>1856-1861</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Scattering, absorption and extinction by a thin finite length conducting wire are computed numerically by solving the generalized Pocklington integro-differential equation using two approaches: the method of moments (MoM) with short range pulse basis functions via the point matching scheme and the Galerkin method with long range basis functions (Legendre polynomials modified to satisfy the boundary conditions of the problem). A new development included in the computations reported here involves a more accurate rendering of wires with lower aspect (length-to-diameter) ratios. Both methods converge to the same answer and satisfy the energy balance to within one percent. A comparison is made with an existing analytical theory by Waterman and Pedersen. This theory solves a more approximate form of the Pocklington equation and is found to have anomalies for some cases. The solutions of this paper agree with the analytical theory for very thin wires, and the results yield a small but significant amplitude and resonance shift for lower aspect ratios. All three solutions are in agreement with the numerous available experimental results to within the experimental errors. The numerical approaches provide a complete direct solution to the problem and remove all the anomalies which occurred in the analytical theory by Waterman and Pedersen.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2007.898579</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2007-06, Vol.55 (6), p.1856-1861 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_34527417 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption analytical theory Anomalies Applied classical electromagnetism Applied sciences Basis functions Computation Conduction Conductivity Diffraction, scattering, reflection Electromagnetic scattering Electromagnetic transients Electromagnetic wave absorption Electromagnetic wave propagation, radiowave propagation electromagnetics Electromagnetism electron and ion optics Exact sciences and technology fibers Fundamental areas of phenomenology (including applications) Galerkin methods Integral equations Integrodifferential equations Mathematical analysis Mathematical models Moment methods numerical methods Physics Radiocommunications Radiowave propagation Resonance scattering Studies Telecommunications Telecommunications and information theory Wire Wires |
title | Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Methods%20for%20Solving%20the%20Problem%20of%20Electromagnetic%20Scattering%20by%20a%20Thin%20Finite%20Conducting%20Wire&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Alyones,%20S.&rft.date=2007-06-01&rft.volume=55&rft.issue=6&rft.spage=1856&rft.epage=1861&rft.pages=1856-1861&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2007.898579&rft_dat=%3Cproquest_RIE%3E34527417%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912237326&rft_id=info:pmid/&rft_ieee_id=4232606&rfr_iscdi=true |