Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull
Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reach...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2009-09, Vol.168 (2), p.739-746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 746 |
---|---|
container_issue | 2 |
container_start_page | 739 |
container_title | Journal of hazardous materials |
container_volume | 168 |
creator | Zhu, Chun-Shui Wang, Li-Ping Chen, Wen-bin |
description | Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5.5. The biosorption process followed pseudo-second-order kinetics and equilibrium was attained at 2
h. The rate constant increased with the increase of temperature indicates endothermic nature of biosorption. The activation energy (
E
a) of Cu(II) biosorption was determined at 17.02
kJ/mol according to Arrhenius equation which shows that biosorption may be an activated chemical biosorption. Other activation parameters such as Δ
H
#, Δ
S
#, and Δ
G
# were also determined from Eyring equation. The equilibrium data were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models depending on temperature. The equilibrium biosorption capacity of Cu(II) determined from the Langmuir equation was 21.25
mg/g at 30
°C. The mean free energy
E (kJ/mol) got from the D-R isotherm also indicated a chemical ion-exchange mechanism. The thermodynamic parameters such as changes in Gibbs free energy (Δ
G
0), enthalpy (Δ
H
0) and entropy (Δ
S
0) were used to predict the nature of biosorption process. The negative Δ
G
0 values at various temperatures confirm the biosorption processes are spontaneous. |
doi_str_mv | 10.1016/j.jhazmat.2009.02.085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34525933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389409002842</els_id><sourcerecordid>34525933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-22fe024b2ca1052eb90df15c6d1cd4f1f15d9eb4cd0f0759a9ffa4d5afc821623</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCTwD5AoJDwtixk7gXhFbQrlSpCMHZcvxBvUriYseVtr8erzaCY08zh2dm3nkQekOgJkDaT_t6f6ceJ7XUFEDUQGvo-TO0IX3XVE3TtM_RBhpgVdMLdo5eprQHANJx9gKdE0FFB327Qbc_7BQe1IiDw9v8Ybf7iF0ME1Z_sg054RTGvPgw4-GA1e_odR6XHAs_HKr7GEzWyyX-btWcF3yXx_EVOnNqTPb1Wi_Qr29ff26vq5vbq932y02lGedLRamzQNlAtSLAqR0EGEe4bg3RhjlSeiPswLQBBx0XSjinmOHK6Z6SljYX6P1pbwlRoqZFTj5pO45qPuaWDeOUi-LhKZCW9bQlbQH5CdQxpBStk_fRTyoeJAF5VC73clUuj8olUFmUl7m364E8TNb8n1odF-DdCqik1eiimrVP_zhKOlo-7Ar3-cTZ4u3B2yiT9nbW1vho9SJN8E9E-QvtZqIx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20752616</pqid></control><display><type>article</type><title>Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhu, Chun-Shui ; Wang, Li-Ping ; Chen, Wen-bin</creator><creatorcontrib>Zhu, Chun-Shui ; Wang, Li-Ping ; Chen, Wen-bin</creatorcontrib><description>Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5.5. The biosorption process followed pseudo-second-order kinetics and equilibrium was attained at 2
h. The rate constant increased with the increase of temperature indicates endothermic nature of biosorption. The activation energy (
E
a) of Cu(II) biosorption was determined at 17.02
kJ/mol according to Arrhenius equation which shows that biosorption may be an activated chemical biosorption. Other activation parameters such as Δ
H
#, Δ
S
#, and Δ
G
# were also determined from Eyring equation. The equilibrium data were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models depending on temperature. The equilibrium biosorption capacity of Cu(II) determined from the Langmuir equation was 21.25
mg/g at 30
°C. The mean free energy
E (kJ/mol) got from the D-R isotherm also indicated a chemical ion-exchange mechanism. The thermodynamic parameters such as changes in Gibbs free energy (Δ
G
0), enthalpy (Δ
H
0) and entropy (Δ
S
0) were used to predict the nature of biosorption process. The negative Δ
G
0 values at various temperatures confirm the biosorption processes are spontaneous.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2009.02.085</identifier><identifier>PMID: 19297086</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Arachis ; Arachis hypogaea ; Biological and medical sciences ; Biosorption ; Biotechnology ; Chemical engineering ; Copper - isolation & purification ; Cu(II) ; Environmental Restoration and Remediation - methods ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Ion exchange ; Kinetic ; Kinetics ; Methods. Procedures. Technologies ; Others ; Peanut hull ; Pollution ; Solutions ; Thermodynamic parameters ; Various methods and equipments ; Water ; Water Pollutants, Chemical - isolation & purification</subject><ispartof>Journal of hazardous materials, 2009-09, Vol.168 (2), p.739-746</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-22fe024b2ca1052eb90df15c6d1cd4f1f15d9eb4cd0f0759a9ffa4d5afc821623</citedby><cites>FETCH-LOGICAL-c455t-22fe024b2ca1052eb90df15c6d1cd4f1f15d9eb4cd0f0759a9ffa4d5afc821623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2009.02.085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21727597$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19297086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Chun-Shui</creatorcontrib><creatorcontrib>Wang, Li-Ping</creatorcontrib><creatorcontrib>Chen, Wen-bin</creatorcontrib><title>Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5.5. The biosorption process followed pseudo-second-order kinetics and equilibrium was attained at 2
h. The rate constant increased with the increase of temperature indicates endothermic nature of biosorption. The activation energy (
E
a) of Cu(II) biosorption was determined at 17.02
kJ/mol according to Arrhenius equation which shows that biosorption may be an activated chemical biosorption. Other activation parameters such as Δ
H
#, Δ
S
#, and Δ
G
# were also determined from Eyring equation. The equilibrium data were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models depending on temperature. The equilibrium biosorption capacity of Cu(II) determined from the Langmuir equation was 21.25
mg/g at 30
°C. The mean free energy
E (kJ/mol) got from the D-R isotherm also indicated a chemical ion-exchange mechanism. The thermodynamic parameters such as changes in Gibbs free energy (Δ
G
0), enthalpy (Δ
H
0) and entropy (Δ
S
0) were used to predict the nature of biosorption process. The negative Δ
G
0 values at various temperatures confirm the biosorption processes are spontaneous.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Arachis</subject><subject>Arachis hypogaea</subject><subject>Biological and medical sciences</subject><subject>Biosorption</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Copper - isolation & purification</subject><subject>Cu(II)</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion exchange</subject><subject>Kinetic</subject><subject>Kinetics</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>Peanut hull</subject><subject>Pollution</subject><subject>Solutions</subject><subject>Thermodynamic parameters</subject><subject>Various methods and equipments</subject><subject>Water</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERZfCTwD5AoJDwtixk7gXhFbQrlSpCMHZcvxBvUriYseVtr8erzaCY08zh2dm3nkQekOgJkDaT_t6f6ceJ7XUFEDUQGvo-TO0IX3XVE3TtM_RBhpgVdMLdo5eprQHANJx9gKdE0FFB327Qbc_7BQe1IiDw9v8Ybf7iF0ME1Z_sg054RTGvPgw4-GA1e_odR6XHAs_HKr7GEzWyyX-btWcF3yXx_EVOnNqTPb1Wi_Qr29ff26vq5vbq932y02lGedLRamzQNlAtSLAqR0EGEe4bg3RhjlSeiPswLQBBx0XSjinmOHK6Z6SljYX6P1pbwlRoqZFTj5pO45qPuaWDeOUi-LhKZCW9bQlbQH5CdQxpBStk_fRTyoeJAF5VC73clUuj8olUFmUl7m364E8TNb8n1odF-DdCqik1eiimrVP_zhKOlo-7Ar3-cTZ4u3B2yiT9nbW1vho9SJN8E9E-QvtZqIx</recordid><startdate>20090915</startdate><enddate>20090915</enddate><creator>Zhu, Chun-Shui</creator><creator>Wang, Li-Ping</creator><creator>Chen, Wen-bin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090915</creationdate><title>Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull</title><author>Zhu, Chun-Shui ; Wang, Li-Ping ; Chen, Wen-bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-22fe024b2ca1052eb90df15c6d1cd4f1f15d9eb4cd0f0759a9ffa4d5afc821623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Arachis</topic><topic>Arachis hypogaea</topic><topic>Biological and medical sciences</topic><topic>Biosorption</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Copper - isolation & purification</topic><topic>Cu(II)</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion exchange</topic><topic>Kinetic</topic><topic>Kinetics</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>Peanut hull</topic><topic>Pollution</topic><topic>Solutions</topic><topic>Thermodynamic parameters</topic><topic>Various methods and equipments</topic><topic>Water</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chun-Shui</creatorcontrib><creatorcontrib>Wang, Li-Ping</creatorcontrib><creatorcontrib>Chen, Wen-bin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chun-Shui</au><au>Wang, Li-Ping</au><au>Chen, Wen-bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2009-09-15</date><risdate>2009</risdate><volume>168</volume><issue>2</issue><spage>739</spage><epage>746</epage><pages>739-746</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5.5. The biosorption process followed pseudo-second-order kinetics and equilibrium was attained at 2
h. The rate constant increased with the increase of temperature indicates endothermic nature of biosorption. The activation energy (
E
a) of Cu(II) biosorption was determined at 17.02
kJ/mol according to Arrhenius equation which shows that biosorption may be an activated chemical biosorption. Other activation parameters such as Δ
H
#, Δ
S
#, and Δ
G
# were also determined from Eyring equation. The equilibrium data were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models depending on temperature. The equilibrium biosorption capacity of Cu(II) determined from the Langmuir equation was 21.25
mg/g at 30
°C. The mean free energy
E (kJ/mol) got from the D-R isotherm also indicated a chemical ion-exchange mechanism. The thermodynamic parameters such as changes in Gibbs free energy (Δ
G
0), enthalpy (Δ
H
0) and entropy (Δ
S
0) were used to predict the nature of biosorption process. The negative Δ
G
0 values at various temperatures confirm the biosorption processes are spontaneous.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19297086</pmid><doi>10.1016/j.jhazmat.2009.02.085</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2009-09, Vol.168 (2), p.739-746 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_34525933 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adsorption Applied sciences Arachis Arachis hypogaea Biological and medical sciences Biosorption Biotechnology Chemical engineering Copper - isolation & purification Cu(II) Environmental Restoration and Remediation - methods Exact sciences and technology Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Ion exchange Kinetic Kinetics Methods. Procedures. Technologies Others Peanut hull Pollution Solutions Thermodynamic parameters Various methods and equipments Water Water Pollutants, Chemical - isolation & purification |
title | Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20Cu(II)%20from%20aqueous%20solution%20by%20agricultural%20by-product:%20Peanut%20hull&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Zhu,%20Chun-Shui&rft.date=2009-09-15&rft.volume=168&rft.issue=2&rft.spage=739&rft.epage=746&rft.pages=739-746&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2009.02.085&rft_dat=%3Cproquest_cross%3E34525933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20752616&rft_id=info:pmid/19297086&rft_els_id=S0304389409002842&rfr_iscdi=true |