Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling

In this work, an artificial neural network (ANN) model was established in order to predict the mechanical properties of transformation induced plasticity/twinning induced plasticity (TRIP/TWIP) steels. The model developed in this study was consider the contents of Mn (15–30 wt%), Si (2–4 wt%) and Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2009-06, Vol.45 (4), p.959-965
Hauptverfasser: Dini, G., Najafizadeh, A., Monir-Vaghefi, S.M., Ebnonnasir, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 4
container_start_page 959
container_title Computational materials science
container_volume 45
creator Dini, G.
Najafizadeh, A.
Monir-Vaghefi, S.M.
Ebnonnasir, A.
description In this work, an artificial neural network (ANN) model was established in order to predict the mechanical properties of transformation induced plasticity/twinning induced plasticity (TRIP/TWIP) steels. The model developed in this study was consider the contents of Mn (15–30 wt%), Si (2–4 wt%) and Al (2–4 wt%) as inputs, while, the total elongation, yield strength and tensile strength are presented as outputs. The optimal ANN architecture and training algorithm were determined. Comparing the predicted values by ANN with the experimental data indicates that trained neural network model provides accurate results.
doi_str_mv 10.1016/j.commatsci.2008.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34523792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092702560900007X</els_id><sourcerecordid>34523792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-425034d4c213f49db179bb5f5ce6c7ba69477b5c23bd47b531951583f40ce6183</originalsourceid><addsrcrecordid>eNqFkN1KwzAYhoMoOKfXYE8UBdvlp2nawzGcDiYOnXgY0vSry-zPTDrFM-_BO_RKzNjw1JMkJM_7fuFB6JTgiGCSDJaRbutadU6biGKcRoRGmPA91COpyEKcYrKPejijIsSUJ4foyLkl9skspT20mFkojO5M8xK0ZVCDXqjGaFUFK9uuwHYG3OZhDD9f33eNXy6G1VXwaC6D-cNkNpg_T2aB6wAqF6zdpqWBtfXxBrqP1r4GdVtA5e-P0UGpKgcnu72PnsbX89FtOL2_mYyG01AzkXRhTDlmcRFrSlgZZ0VORJbnvOQaEi1ylWSxEDnXlOVF7A-MZJzw1LPYEyRlfXS-7fX_f1uD62RtnIaqUg20aydZzCkTGfWg2ILats5ZKOXKmlrZT0mw3JiVS_lnVm7MSkKlN-uTZ7sRynlTpVWNNu4vTklCEpZgzw23nJcD7was9E3QaC_cgu5k0Zp_Z_0CH0iUXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34523792</pqid></control><display><type>article</type><title>Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dini, G. ; Najafizadeh, A. ; Monir-Vaghefi, S.M. ; Ebnonnasir, A.</creator><creatorcontrib>Dini, G. ; Najafizadeh, A. ; Monir-Vaghefi, S.M. ; Ebnonnasir, A.</creatorcontrib><description>In this work, an artificial neural network (ANN) model was established in order to predict the mechanical properties of transformation induced plasticity/twinning induced plasticity (TRIP/TWIP) steels. The model developed in this study was consider the contents of Mn (15–30 wt%), Si (2–4 wt%) and Al (2–4 wt%) as inputs, while, the total elongation, yield strength and tensile strength are presented as outputs. The optimal ANN architecture and training algorithm were determined. Comparing the predicted values by ANN with the experimental data indicates that trained neural network model provides accurate results.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2008.12.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural network (ANN) ; Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Mechanical and acoustical properties of condensed matter ; Mechanical properties ; Mechanical properties of solids ; Physics ; Steel ; TRIP/TWIP</subject><ispartof>Computational materials science, 2009-06, Vol.45 (4), p.959-965</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-425034d4c213f49db179bb5f5ce6c7ba69477b5c23bd47b531951583f40ce6183</citedby><cites>FETCH-LOGICAL-c376t-425034d4c213f49db179bb5f5ce6c7ba69477b5c23bd47b531951583f40ce6183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092702560900007X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21616360$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dini, G.</creatorcontrib><creatorcontrib>Najafizadeh, A.</creatorcontrib><creatorcontrib>Monir-Vaghefi, S.M.</creatorcontrib><creatorcontrib>Ebnonnasir, A.</creatorcontrib><title>Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling</title><title>Computational materials science</title><description>In this work, an artificial neural network (ANN) model was established in order to predict the mechanical properties of transformation induced plasticity/twinning induced plasticity (TRIP/TWIP) steels. The model developed in this study was consider the contents of Mn (15–30 wt%), Si (2–4 wt%) and Al (2–4 wt%) as inputs, while, the total elongation, yield strength and tensile strength are presented as outputs. The optimal ANN architecture and training algorithm were determined. Comparing the predicted values by ANN with the experimental data indicates that trained neural network model provides accurate results.</description><subject>Artificial neural network (ANN)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><subject>Steel</subject><subject>TRIP/TWIP</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KwzAYhoMoOKfXYE8UBdvlp2nawzGcDiYOnXgY0vSry-zPTDrFM-_BO_RKzNjw1JMkJM_7fuFB6JTgiGCSDJaRbutadU6biGKcRoRGmPA91COpyEKcYrKPejijIsSUJ4foyLkl9skspT20mFkojO5M8xK0ZVCDXqjGaFUFK9uuwHYG3OZhDD9f33eNXy6G1VXwaC6D-cNkNpg_T2aB6wAqF6zdpqWBtfXxBrqP1r4GdVtA5e-P0UGpKgcnu72PnsbX89FtOL2_mYyG01AzkXRhTDlmcRFrSlgZZ0VORJbnvOQaEi1ylWSxEDnXlOVF7A-MZJzw1LPYEyRlfXS-7fX_f1uD62RtnIaqUg20aydZzCkTGfWg2ILats5ZKOXKmlrZT0mw3JiVS_lnVm7MSkKlN-uTZ7sRynlTpVWNNu4vTklCEpZgzw23nJcD7was9E3QaC_cgu5k0Zp_Z_0CH0iUXw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Dini, G.</creator><creator>Najafizadeh, A.</creator><creator>Monir-Vaghefi, S.M.</creator><creator>Ebnonnasir, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling</title><author>Dini, G. ; Najafizadeh, A. ; Monir-Vaghefi, S.M. ; Ebnonnasir, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-425034d4c213f49db179bb5f5ce6c7ba69477b5c23bd47b531951583f40ce6183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural network (ANN)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><topic>Steel</topic><topic>TRIP/TWIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dini, G.</creatorcontrib><creatorcontrib>Najafizadeh, A.</creatorcontrib><creatorcontrib>Monir-Vaghefi, S.M.</creatorcontrib><creatorcontrib>Ebnonnasir, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dini, G.</au><au>Najafizadeh, A.</au><au>Monir-Vaghefi, S.M.</au><au>Ebnonnasir, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling</atitle><jtitle>Computational materials science</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>45</volume><issue>4</issue><spage>959</spage><epage>965</epage><pages>959-965</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>In this work, an artificial neural network (ANN) model was established in order to predict the mechanical properties of transformation induced plasticity/twinning induced plasticity (TRIP/TWIP) steels. The model developed in this study was consider the contents of Mn (15–30 wt%), Si (2–4 wt%) and Al (2–4 wt%) as inputs, while, the total elongation, yield strength and tensile strength are presented as outputs. The optimal ANN architecture and training algorithm were determined. Comparing the predicted values by ANN with the experimental data indicates that trained neural network model provides accurate results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2008.12.015</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2009-06, Vol.45 (4), p.959-965
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_34523792
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural network (ANN)
Condensed matter: structure, mechanical and thermal properties
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties
Mechanical properties of solids
Physics
Steel
TRIP/TWIP
title Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20of%20mechanical%20properties%20of%20Fe%E2%80%93Mn%E2%80%93(Al,%20Si)%20TRIP/TWIP%20steels%20using%20neural%20network%20modeling&rft.jtitle=Computational%20materials%20science&rft.au=Dini,%20G.&rft.date=2009-06-01&rft.volume=45&rft.issue=4&rft.spage=959&rft.epage=965&rft.pages=959-965&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2008.12.015&rft_dat=%3Cproquest_cross%3E34523792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34523792&rft_id=info:pmid/&rft_els_id=S092702560900007X&rfr_iscdi=true