Semantic Home Photo Categorization

A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2007-03, Vol.17 (3), p.324-335
Hauptverfasser: Yang, Seungji, Kim, Sang-Kyun, Man Ro, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 3
container_start_page 324
container_title IEEE transactions on circuits and systems for video technology
container_volume 17
creator Yang, Seungji
Kim, Sang-Kyun
Man Ro, Yong
description A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate to detect local and global photo semantics in a feed-forward way. The first layer aims to predict likelihood of predefined local photo semantics based on camera metadata and regional low-level visual features. In the second layer, one or more global photo semantics is detected based on the likelihood. To construct classifiers producing a posterior probability, we use a parametric model to fit the output of SVM classifiers to posterior probability. A concept merging process based on a set of semantic-confidence maps is also presented to cope with selecting more likelihood photo semantics on spatially overlapping local regions. Experiment was performed with 3086 photos that come from MPEG-7 visual core experiment two official databases. Results showed that the proposed method would much better capture multiple semantic meanings of home photos, compared to other similar technologies
doi_str_mv 10.1109/TCSVT.2007.890829
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34523226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118248</ieee_id><sourcerecordid>880659662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-8fa7ad6c291c2c90e0aade8dfc8eb5dd2d9823c11bf40d4dec3a0535a0403b23</originalsourceid><addsrcrecordid>eNp90D1PwzAQgGELgUQp_ADEUjHAlHLnj9QeUQQUqRJIjVgt13YgVRMXOx3g15MSxMDA5BueO8kvIecIU0RQN2WxfCmnFGA2lQokVQdkhELIjFIQh_0MAjNJURyTk5TWAMgln43I5dI3pu1qO5mHxk-e30IXJoXp_GuI9afp6tCekqPKbJI_-3nHpLy_K4t5tnh6eCxuF5llQnSZrMzMuNxShZZaBR6McV66ykq_Es5RpyRlFnFVcXDcecsMCCYMcGArysbkeji7jeF951OnmzpZv9mY1odd0lJCLlSe7-XVv5JxQRmleQ8v_8B12MW2_4RWSPsYAlmPcEA2hpSir_Q21o2JHxpB79vq77Z631YPbfudi2Gn9t7_eo4oKZfsC6widB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912215513</pqid></control><display><type>article</type><title>Semantic Home Photo Categorization</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Seungji ; Kim, Sang-Kyun ; Man Ro, Yong</creator><creatorcontrib>Yang, Seungji ; Kim, Sang-Kyun ; Man Ro, Yong</creatorcontrib><description>A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate to detect local and global photo semantics in a feed-forward way. The first layer aims to predict likelihood of predefined local photo semantics based on camera metadata and regional low-level visual features. In the second layer, one or more global photo semantics is detected based on the likelihood. To construct classifiers producing a posterior probability, we use a parametric model to fit the output of SVM classifiers to posterior probability. A concept merging process based on a set of semantic-confidence maps is also presented to cope with selecting more likelihood photo semantics on spatially overlapping local regions. Experiment was performed with 3086 photos that come from MPEG-7 visual core experiment two official databases. Results showed that the proposed method would much better capture multiple semantic meanings of home photos, compared to other similar technologies</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2007.890829</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Camera metadata ; Cameras ; Classifiers ; Computer vision ; Feedforward systems ; image classification ; Mathematical models ; Merging ; Metadata ; MPEG 7 Standard ; Parametric statistics ; photo album ; Semantics ; Spatial databases ; support vector machine ; Support vector machine classification ; Support vector machines ; Visual ; Visual databases</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2007-03, Vol.17 (3), p.324-335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-8fa7ad6c291c2c90e0aade8dfc8eb5dd2d9823c11bf40d4dec3a0535a0403b23</citedby><cites>FETCH-LOGICAL-c355t-8fa7ad6c291c2c90e0aade8dfc8eb5dd2d9823c11bf40d4dec3a0535a0403b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4118248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Seungji</creatorcontrib><creatorcontrib>Kim, Sang-Kyun</creatorcontrib><creatorcontrib>Man Ro, Yong</creatorcontrib><title>Semantic Home Photo Categorization</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate to detect local and global photo semantics in a feed-forward way. The first layer aims to predict likelihood of predefined local photo semantics based on camera metadata and regional low-level visual features. In the second layer, one or more global photo semantics is detected based on the likelihood. To construct classifiers producing a posterior probability, we use a parametric model to fit the output of SVM classifiers to posterior probability. A concept merging process based on a set of semantic-confidence maps is also presented to cope with selecting more likelihood photo semantics on spatially overlapping local regions. Experiment was performed with 3086 photos that come from MPEG-7 visual core experiment two official databases. Results showed that the proposed method would much better capture multiple semantic meanings of home photos, compared to other similar technologies</description><subject>Camera metadata</subject><subject>Cameras</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Feedforward systems</subject><subject>image classification</subject><subject>Mathematical models</subject><subject>Merging</subject><subject>Metadata</subject><subject>MPEG 7 Standard</subject><subject>Parametric statistics</subject><subject>photo album</subject><subject>Semantics</subject><subject>Spatial databases</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Visual</subject><subject>Visual databases</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1PwzAQgGELgUQp_ADEUjHAlHLnj9QeUQQUqRJIjVgt13YgVRMXOx3g15MSxMDA5BueO8kvIecIU0RQN2WxfCmnFGA2lQokVQdkhELIjFIQh_0MAjNJURyTk5TWAMgln43I5dI3pu1qO5mHxk-e30IXJoXp_GuI9afp6tCekqPKbJI_-3nHpLy_K4t5tnh6eCxuF5llQnSZrMzMuNxShZZaBR6McV66ykq_Es5RpyRlFnFVcXDcecsMCCYMcGArysbkeji7jeF951OnmzpZv9mY1odd0lJCLlSe7-XVv5JxQRmleQ8v_8B12MW2_4RWSPsYAlmPcEA2hpSir_Q21o2JHxpB79vq77Z631YPbfudi2Gn9t7_eo4oKZfsC6widB4</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Yang, Seungji</creator><creator>Kim, Sang-Kyun</creator><creator>Man Ro, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070301</creationdate><title>Semantic Home Photo Categorization</title><author>Yang, Seungji ; Kim, Sang-Kyun ; Man Ro, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-8fa7ad6c291c2c90e0aade8dfc8eb5dd2d9823c11bf40d4dec3a0535a0403b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Camera metadata</topic><topic>Cameras</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Feedforward systems</topic><topic>image classification</topic><topic>Mathematical models</topic><topic>Merging</topic><topic>Metadata</topic><topic>MPEG 7 Standard</topic><topic>Parametric statistics</topic><topic>photo album</topic><topic>Semantics</topic><topic>Spatial databases</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Visual</topic><topic>Visual databases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Seungji</creatorcontrib><creatorcontrib>Kim, Sang-Kyun</creatorcontrib><creatorcontrib>Man Ro, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Seungji</au><au>Kim, Sang-Kyun</au><au>Man Ro, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Home Photo Categorization</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>17</volume><issue>3</issue><spage>324</spage><epage>335</epage><pages>324-335</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate to detect local and global photo semantics in a feed-forward way. The first layer aims to predict likelihood of predefined local photo semantics based on camera metadata and regional low-level visual features. In the second layer, one or more global photo semantics is detected based on the likelihood. To construct classifiers producing a posterior probability, we use a parametric model to fit the output of SVM classifiers to posterior probability. A concept merging process based on a set of semantic-confidence maps is also presented to cope with selecting more likelihood photo semantics on spatially overlapping local regions. Experiment was performed with 3086 photos that come from MPEG-7 visual core experiment two official databases. Results showed that the proposed method would much better capture multiple semantic meanings of home photos, compared to other similar technologies</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2007.890829</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2007-03, Vol.17 (3), p.324-335
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_miscellaneous_34523226
source IEEE Electronic Library (IEL)
subjects Camera metadata
Cameras
Classifiers
Computer vision
Feedforward systems
image classification
Mathematical models
Merging
Metadata
MPEG 7 Standard
Parametric statistics
photo album
Semantics
Spatial databases
support vector machine
Support vector machine classification
Support vector machines
Visual
Visual databases
title Semantic Home Photo Categorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Home%20Photo%20Categorization&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Yang,%20Seungji&rft.date=2007-03-01&rft.volume=17&rft.issue=3&rft.spage=324&rft.epage=335&rft.pages=324-335&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2007.890829&rft_dat=%3Cproquest_RIE%3E880659662%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912215513&rft_id=info:pmid/&rft_ieee_id=4118248&rfr_iscdi=true