Semantic Home Photo Categorization

A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2007-03, Vol.17 (3), p.324-335
Hauptverfasser: Yang, Seungji, Kim, Sang-Kyun, Man Ro, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A semantic categorization method for generic home photo is proposed. The main contribution of this paper is to exploit a two-layered classification model incorporating camera metadata with low-level features for multilabel detection. The two-layered support vector machine (SVM) classifiers operate to detect local and global photo semantics in a feed-forward way. The first layer aims to predict likelihood of predefined local photo semantics based on camera metadata and regional low-level visual features. In the second layer, one or more global photo semantics is detected based on the likelihood. To construct classifiers producing a posterior probability, we use a parametric model to fit the output of SVM classifiers to posterior probability. A concept merging process based on a set of semantic-confidence maps is also presented to cope with selecting more likelihood photo semantics on spatially overlapping local regions. Experiment was performed with 3086 photos that come from MPEG-7 visual core experiment two official databases. Results showed that the proposed method would much better capture multiple semantic meanings of home photos, compared to other similar technologies
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2007.890829