ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments

One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2008-06, Vol.27 (4), p.1255-1264
Hauptverfasser: Li, Y., Adelson, E., Agarwala, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 4
container_start_page 1255
container_title Computer graphics forum
container_volume 27
creator Li, Y.
Adelson, E.
Agarwala, A.
description One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.
doi_str_mv 10.1111/j.1467-8659.2008.01264.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34515875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554709681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4614-f77ef3e60e9b9ab1cb0843c7b325ca5ccdc7721ea49ddd6147ec28c1268058fb3</originalsourceid><addsrcrecordid>eNqNkE1u2zAQhYkiBeq4vQPRRXZWSYkUqQJZOIbtGjDQRX-2BEWODAqy6JAyYu9yhJyxJykVB1lkldnMAO-9wcyHEKYko6m-tRllpZjJkldZTojMCM1Llp0-oMmrcIUmhKZZEM4_oesYW0IIEyWfoN0vE1xdd3DnfRy-47m1rt_hRadjdI0zenC-x4PHS7uDf49P8wcdAG_6AcLBdxfVN3jrje7wZq93gHVv8V9nwadl7TEOe-iH-Bl9bHQX4ctLn6I_q-XvxY_Z9ud6s5hvZ5qVlM0aIaApoCRQ1ZWuqamJZIURdZFzo7kx1giRU9CsstamhACTS5NeloTLpi6m6Oay9xD8_RHioPYuGug63YM_RlUwTrkUPBm_vjG2_hj6dJuiFSu5kBVNJnkxmeBjDNCoQ3B7Hc6KEjXiV60aKauRshrxq2f86pSit5fog-vg_O6cWqxX41T8B43sjPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194657891</pqid></control><display><type>article</type><title>ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Li, Y. ; Adelson, E. ; Agarwala, A.</creator><creatorcontrib>Li, Y. ; Adelson, E. ; Agarwala, A.</creatorcontrib><description>One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2008.01264.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Classification ; Computer animation ; Computer programming ; Editing ; I.4.3 [Image Processing and Computer Vision]: Enhancement ; Interpolation ; Optimization techniques ; Studies ; Video production</subject><ispartof>Computer graphics forum, 2008-06, Vol.27 (4), p.1255-1264</ispartof><rights>2008 The Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><rights>2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4614-f77ef3e60e9b9ab1cb0843c7b325ca5ccdc7721ea49ddd6147ec28c1268058fb3</citedby><cites>FETCH-LOGICAL-a4614-f77ef3e60e9b9ab1cb0843c7b325ca5ccdc7721ea49ddd6147ec28c1268058fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8659.2008.01264.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8659.2008.01264.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Adelson, E.</creatorcontrib><creatorcontrib>Agarwala, A.</creatorcontrib><title>ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments</title><title>Computer graphics forum</title><description>One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.</description><subject>Classification</subject><subject>Computer animation</subject><subject>Computer programming</subject><subject>Editing</subject><subject>I.4.3 [Image Processing and Computer Vision]: Enhancement</subject><subject>Interpolation</subject><subject>Optimization techniques</subject><subject>Studies</subject><subject>Video production</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1u2zAQhYkiBeq4vQPRRXZWSYkUqQJZOIbtGjDQRX-2BEWODAqy6JAyYu9yhJyxJykVB1lkldnMAO-9wcyHEKYko6m-tRllpZjJkldZTojMCM1Llp0-oMmrcIUmhKZZEM4_oesYW0IIEyWfoN0vE1xdd3DnfRy-47m1rt_hRadjdI0zenC-x4PHS7uDf49P8wcdAG_6AcLBdxfVN3jrje7wZq93gHVv8V9nwadl7TEOe-iH-Bl9bHQX4ctLn6I_q-XvxY_Z9ud6s5hvZ5qVlM0aIaApoCRQ1ZWuqamJZIURdZFzo7kx1giRU9CsstamhACTS5NeloTLpi6m6Oay9xD8_RHioPYuGug63YM_RlUwTrkUPBm_vjG2_hj6dJuiFSu5kBVNJnkxmeBjDNCoQ3B7Hc6KEjXiV60aKauRshrxq2f86pSit5fog-vg_O6cWqxX41T8B43sjPg</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>Li, Y.</creator><creator>Adelson, E.</creator><creator>Agarwala, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200806</creationdate><title>ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments</title><author>Li, Y. ; Adelson, E. ; Agarwala, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4614-f77ef3e60e9b9ab1cb0843c7b325ca5ccdc7721ea49ddd6147ec28c1268058fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification</topic><topic>Computer animation</topic><topic>Computer programming</topic><topic>Editing</topic><topic>I.4.3 [Image Processing and Computer Vision]: Enhancement</topic><topic>Interpolation</topic><topic>Optimization techniques</topic><topic>Studies</topic><topic>Video production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Adelson, E.</creatorcontrib><creatorcontrib>Agarwala, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.</au><au>Adelson, E.</au><au>Agarwala, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments</atitle><jtitle>Computer graphics forum</jtitle><date>2008-06</date><risdate>2008</risdate><volume>27</volume><issue>4</issue><spage>1255</spage><epage>1264</epage><pages>1255-1264</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2008.01264.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2008-06, Vol.27 (4), p.1255-1264
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_34515875
source Wiley Journals; EBSCOhost Business Source Complete
subjects Classification
Computer animation
Computer programming
Editing
I.4.3 [Image Processing and Computer Vision]: Enhancement
Interpolation
Optimization techniques
Studies
Video production
title ScribbleBoost: Adding Classification to Edge‐Aware Interpolation of Local Image and Video Adjustments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ScribbleBoost:%20Adding%20Classification%20to%20Edge%E2%80%90Aware%20Interpolation%20of%20Local%20Image%20and%20Video%20Adjustments&rft.jtitle=Computer%20graphics%20forum&rft.au=Li,%20Y.&rft.date=2008-06&rft.volume=27&rft.issue=4&rft.spage=1255&rft.epage=1264&rft.pages=1255-1264&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2008.01264.x&rft_dat=%3Cproquest_cross%3E1554709681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194657891&rft_id=info:pmid/&rfr_iscdi=true