Listener-based Analysis of Surface Importance for Acoustic Metrics
Acoustic quality in room acoustics is measured by well defined quantities, like definition, which can be derived from simulated impulse response filters or measured values. These take into account the intensity and phase shift of multiple reflections due to a wave front emanating from a sound source...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2007-11, Vol.13 (6), p.1680-1687 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1687 |
---|---|
container_issue | 6 |
container_start_page | 1680 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 13 |
creator | Michel, F. Deines, E. Hering-Bertram, M. Garth, C. Hagen, H. |
description | Acoustic quality in room acoustics is measured by well defined quantities, like definition, which can be derived from simulated impulse response filters or measured values. These take into account the intensity and phase shift of multiple reflections due to a wave front emanating from a sound source. Definition (D 50 ) and clarity (C 50 ) for example correspond to the fraction of the energy received in total to the energy received in the first 50 ms at a certain listener position. Unfortunately, the impulse response measured at a single point does not provide any information about the direction of reflections, and about the reflection surfaces which contribute to this measure. For the visualization of room acoustics, however, this information is very useful since it allows to discover regions with high contribution and provides insight into the influence of all reflecting surfaces to the quality measure. We use the phonon tracing method to calculate the contribution of the reflection surfaces to the impulse response for different listener positions. This data is used to compute importance values for the geometry taking a certain acoustic metric into account. To get a visual insight into the directional aspect, we map the importance to the reflecting surfaces of the geometry. This visualization indicates which parts of the surfaces need to be changed to enhance the chosen acoustic quality measure. We apply our method to the acoustic improvement of a lecture hall by means of enhancing the overall speech comprehensibility (clarity) and evaluate the results using glyphs to visualize the clarity (C 50 ) values at listener positions throughout the room. |
doi_str_mv | 10.1109/TVCG.2007.70575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34512996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4376202</ieee_id><sourcerecordid>1671232990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-fe558aa34734af90bbf0fdf8c878b50c6b7c45c2aae646de81a0202c065e788b3</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmBRWhrH7bmHQFh6CLmsPfqWjq5JUoNLDk1yFVp5BBtsryvtHvzvI8emhRzSkwb0zDDMS8g3ChNKwU4fnuZ3EwagJxqklh_IiFpBa5CgPpYatK6ZYuqMnOf8DECFMPYzOaPaKkOZHJEfyzb3uMVUNz7jqppt_Xqf21x1sfo9pOgDVovNrku935YydqmahW7IfRuqX9inNuQv5FP064xfT--YPN7ePMx_1sv7u8V8tqyDpLyvI0ppvOdCc-GjhaaJEFfRBKNNIyGoRgchA_MelVArNNQDAxZASdTGNHxMro5zd6n7M2Du3abNAddrv8WykVNGSCWk_i_kQlJmrSrw-l1IlaaMFwqFfn9Dn7shlWNlZxS3TCptC5oeUUhdzgmj26V249PeUXCHvNwhL3fIy73mVTouT2OHZoOrf_4UUAEXR9Ai4t9vwbUqt-EvWamXtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863925679</pqid></control><display><type>article</type><title>Listener-based Analysis of Surface Importance for Acoustic Metrics</title><source>IEEE Electronic Library (IEL)</source><creator>Michel, F. ; Deines, E. ; Hering-Bertram, M. ; Garth, C. ; Hagen, H.</creator><creatorcontrib>Michel, F. ; Deines, E. ; Hering-Bertram, M. ; Garth, C. ; Hagen, H.</creatorcontrib><description>Acoustic quality in room acoustics is measured by well defined quantities, like definition, which can be derived from simulated impulse response filters or measured values. These take into account the intensity and phase shift of multiple reflections due to a wave front emanating from a sound source. Definition (D 50 ) and clarity (C 50 ) for example correspond to the fraction of the energy received in total to the energy received in the first 50 ms at a certain listener position. Unfortunately, the impulse response measured at a single point does not provide any information about the direction of reflections, and about the reflection surfaces which contribute to this measure. For the visualization of room acoustics, however, this information is very useful since it allows to discover regions with high contribution and provides insight into the influence of all reflecting surfaces to the quality measure. We use the phonon tracing method to calculate the contribution of the reflection surfaces to the impulse response for different listener positions. This data is used to compute importance values for the geometry taking a certain acoustic metric into account. To get a visual insight into the directional aspect, we map the importance to the reflecting surfaces of the geometry. This visualization indicates which parts of the surfaces need to be changed to enhance the chosen acoustic quality measure. We apply our method to the acoustic improvement of a lecture hall by means of enhancing the overall speech comprehensibility (clarity) and evaluate the results using glyphs to visualize the clarity (C 50 ) values at listener positions throughout the room.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2007.70575</identifier><identifier>PMID: 17968125</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; Acoustic applications ; Acoustic measurement ; Acoustic measurements ; Acoustic Metric ; Acoustic reflection ; Acoustics ; Applications of Visualization ; Clarity ; Data visualization ; Frequency ; Geometry ; Impulse response ; Lectures ; Optical reflection ; Optical surface waves ; Phase shift ; Phonon Tracing ; Phonons ; Reflection ; Room Acoustics ; Sound analytics ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2007-11, Vol.13 (6), p.1680-1687</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-fe558aa34734af90bbf0fdf8c878b50c6b7c45c2aae646de81a0202c065e788b3</citedby><cites>FETCH-LOGICAL-c513t-fe558aa34734af90bbf0fdf8c878b50c6b7c45c2aae646de81a0202c065e788b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4376202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4376202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17968125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michel, F.</creatorcontrib><creatorcontrib>Deines, E.</creatorcontrib><creatorcontrib>Hering-Bertram, M.</creatorcontrib><creatorcontrib>Garth, C.</creatorcontrib><creatorcontrib>Hagen, H.</creatorcontrib><title>Listener-based Analysis of Surface Importance for Acoustic Metrics</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Acoustic quality in room acoustics is measured by well defined quantities, like definition, which can be derived from simulated impulse response filters or measured values. These take into account the intensity and phase shift of multiple reflections due to a wave front emanating from a sound source. Definition (D 50 ) and clarity (C 50 ) for example correspond to the fraction of the energy received in total to the energy received in the first 50 ms at a certain listener position. Unfortunately, the impulse response measured at a single point does not provide any information about the direction of reflections, and about the reflection surfaces which contribute to this measure. For the visualization of room acoustics, however, this information is very useful since it allows to discover regions with high contribution and provides insight into the influence of all reflecting surfaces to the quality measure. We use the phonon tracing method to calculate the contribution of the reflection surfaces to the impulse response for different listener positions. This data is used to compute importance values for the geometry taking a certain acoustic metric into account. To get a visual insight into the directional aspect, we map the importance to the reflecting surfaces of the geometry. This visualization indicates which parts of the surfaces need to be changed to enhance the chosen acoustic quality measure. We apply our method to the acoustic improvement of a lecture hall by means of enhancing the overall speech comprehensibility (clarity) and evaluate the results using glyphs to visualize the clarity (C 50 ) values at listener positions throughout the room.</description><subject>Absorption</subject><subject>Acoustic applications</subject><subject>Acoustic measurement</subject><subject>Acoustic measurements</subject><subject>Acoustic Metric</subject><subject>Acoustic reflection</subject><subject>Acoustics</subject><subject>Applications of Visualization</subject><subject>Clarity</subject><subject>Data visualization</subject><subject>Frequency</subject><subject>Geometry</subject><subject>Impulse response</subject><subject>Lectures</subject><subject>Optical reflection</subject><subject>Optical surface waves</subject><subject>Phase shift</subject><subject>Phonon Tracing</subject><subject>Phonons</subject><subject>Reflection</subject><subject>Room Acoustics</subject><subject>Sound analytics</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1rGzEQBmBRWhrH7bmHQFh6CLmsPfqWjq5JUoNLDk1yFVp5BBtsryvtHvzvI8emhRzSkwb0zDDMS8g3ChNKwU4fnuZ3EwagJxqklh_IiFpBa5CgPpYatK6ZYuqMnOf8DECFMPYzOaPaKkOZHJEfyzb3uMVUNz7jqppt_Xqf21x1sfo9pOgDVovNrku935YydqmahW7IfRuqX9inNuQv5FP064xfT--YPN7ePMx_1sv7u8V8tqyDpLyvI0ppvOdCc-GjhaaJEFfRBKNNIyGoRgchA_MelVArNNQDAxZASdTGNHxMro5zd6n7M2Du3abNAddrv8WykVNGSCWk_i_kQlJmrSrw-l1IlaaMFwqFfn9Dn7shlWNlZxS3TCptC5oeUUhdzgmj26V249PeUXCHvNwhL3fIy73mVTouT2OHZoOrf_4UUAEXR9Ai4t9vwbUqt-EvWamXtQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Michel, F.</creator><creator>Deines, E.</creator><creator>Hering-Bertram, M.</creator><creator>Garth, C.</creator><creator>Hagen, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Listener-based Analysis of Surface Importance for Acoustic Metrics</title><author>Michel, F. ; Deines, E. ; Hering-Bertram, M. ; Garth, C. ; Hagen, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-fe558aa34734af90bbf0fdf8c878b50c6b7c45c2aae646de81a0202c065e788b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>Acoustic applications</topic><topic>Acoustic measurement</topic><topic>Acoustic measurements</topic><topic>Acoustic Metric</topic><topic>Acoustic reflection</topic><topic>Acoustics</topic><topic>Applications of Visualization</topic><topic>Clarity</topic><topic>Data visualization</topic><topic>Frequency</topic><topic>Geometry</topic><topic>Impulse response</topic><topic>Lectures</topic><topic>Optical reflection</topic><topic>Optical surface waves</topic><topic>Phase shift</topic><topic>Phonon Tracing</topic><topic>Phonons</topic><topic>Reflection</topic><topic>Room Acoustics</topic><topic>Sound analytics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michel, F.</creatorcontrib><creatorcontrib>Deines, E.</creatorcontrib><creatorcontrib>Hering-Bertram, M.</creatorcontrib><creatorcontrib>Garth, C.</creatorcontrib><creatorcontrib>Hagen, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michel, F.</au><au>Deines, E.</au><au>Hering-Bertram, M.</au><au>Garth, C.</au><au>Hagen, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Listener-based Analysis of Surface Importance for Acoustic Metrics</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>13</volume><issue>6</issue><spage>1680</spage><epage>1687</epage><pages>1680-1687</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Acoustic quality in room acoustics is measured by well defined quantities, like definition, which can be derived from simulated impulse response filters or measured values. These take into account the intensity and phase shift of multiple reflections due to a wave front emanating from a sound source. Definition (D 50 ) and clarity (C 50 ) for example correspond to the fraction of the energy received in total to the energy received in the first 50 ms at a certain listener position. Unfortunately, the impulse response measured at a single point does not provide any information about the direction of reflections, and about the reflection surfaces which contribute to this measure. For the visualization of room acoustics, however, this information is very useful since it allows to discover regions with high contribution and provides insight into the influence of all reflecting surfaces to the quality measure. We use the phonon tracing method to calculate the contribution of the reflection surfaces to the impulse response for different listener positions. This data is used to compute importance values for the geometry taking a certain acoustic metric into account. To get a visual insight into the directional aspect, we map the importance to the reflecting surfaces of the geometry. This visualization indicates which parts of the surfaces need to be changed to enhance the chosen acoustic quality measure. We apply our method to the acoustic improvement of a lecture hall by means of enhancing the overall speech comprehensibility (clarity) and evaluate the results using glyphs to visualize the clarity (C 50 ) values at listener positions throughout the room.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17968125</pmid><doi>10.1109/TVCG.2007.70575</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2007-11, Vol.13 (6), p.1680-1687 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_34512996 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Acoustic applications Acoustic measurement Acoustic measurements Acoustic Metric Acoustic reflection Acoustics Applications of Visualization Clarity Data visualization Frequency Geometry Impulse response Lectures Optical reflection Optical surface waves Phase shift Phonon Tracing Phonons Reflection Room Acoustics Sound analytics Visualization |
title | Listener-based Analysis of Surface Importance for Acoustic Metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Listener-based%20Analysis%20of%20Surface%20Importance%20for%20Acoustic%20Metrics&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Michel,%20F.&rft.date=2007-11-01&rft.volume=13&rft.issue=6&rft.spage=1680&rft.epage=1687&rft.pages=1680-1687&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2007.70575&rft_dat=%3Cproquest_RIE%3E1671232990%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863925679&rft_id=info:pmid/17968125&rft_ieee_id=4376202&rfr_iscdi=true |