An evolutionary approach for the clustering data problem

The clustering problem consists in the discovery of interesting groups in a dataset. Such task is very important and widely tackled in the literature. In this paper, we propose an evolutionary method in order to obtain well formed and spatially separated clusters. The proposed algorithm uses a compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soares, R.G.F., Silva, K.P., Ludermir, T.B., de Carvalho, F.A.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1950
container_issue
container_start_page 1945
container_title
container_volume 10
creator Soares, R.G.F.
Silva, K.P.
Ludermir, T.B.
de Carvalho, F.A.T.
description The clustering problem consists in the discovery of interesting groups in a dataset. Such task is very important and widely tackled in the literature. In this paper, we propose an evolutionary method in order to obtain well formed and spatially separated clusters. The proposed algorithm uses a complete solution representation, each partition is represented by a length-variable chromosome . The variation operators were chosen to facilitate the exchange of clustering information between individuals. We have put two complementary clustering criteria together in the fitness function, so that the method can find clusters with arbitrary shapes. The k-means algorithm was the basis of the local search operator, such operator might refine the clustering solutions. The population diversity was an important issue for the algorithm, so a diversity maintenance scheme was employed. Differently from other existing clustering algorithms, our algorithm does not need the setting of the number of clusters in advance. We evaluated the method in different contexts, using both real and simulated data.
doi_str_mv 10.1109/IJCNN.2008.4634064
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34512465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4634064</ieee_id><sourcerecordid>34512465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-8764ae2a7c758790c8b3d17d8fa7b430d779e9b98ac5e2427a103cd6cfb95c183</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loi38AGy8Ypcytid-LKuKR1FVNrCOHGdCg9KkxAkSf0-kFrGZWZyjO5rL2I2AuRDg7lcvy81mLgHsHLVC0HjCpgIlorBS6FM2GadIEMGc_QOw539AOXXJpjF-AkjlnJowu2g4fbf10Fdt47sf7vf7rvVhy8u24_2WeKiH2FNXNR-88L3nI85r2l2xi9LXka6Pe8beHx_els_J-vVptVysk0qC7hNrNHqS3gSTWuMg2FwVwhS29CZHBYUxjlzurA8pSZTGC1Ch0KHMXRqEVTN2d8gd734NFPtsV8VAde0baoeYKUyFRJ2O4u1BrIgo23fVbnwnO_akfgFfb1en</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34512465</pqid></control><display><type>conference_proceeding</type><title>An evolutionary approach for the clustering data problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, R.G.F. ; Silva, K.P. ; Ludermir, T.B. ; de Carvalho, F.A.T.</creator><creatorcontrib>Soares, R.G.F. ; Silva, K.P. ; Ludermir, T.B. ; de Carvalho, F.A.T.</creatorcontrib><description>The clustering problem consists in the discovery of interesting groups in a dataset. Such task is very important and widely tackled in the literature. In this paper, we propose an evolutionary method in order to obtain well formed and spatially separated clusters. The proposed algorithm uses a complete solution representation, each partition is represented by a length-variable chromosome . The variation operators were chosen to facilitate the exchange of clustering information between individuals. We have put two complementary clustering criteria together in the fitness function, so that the method can find clusters with arbitrary shapes. The k-means algorithm was the basis of the local search operator, such operator might refine the clustering solutions. The population diversity was an important issue for the algorithm, so a diversity maintenance scheme was employed. Differently from other existing clustering algorithms, our algorithm does not need the setting of the number of clusters in advance. We evaluated the method in different contexts, using both real and simulated data.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4634064</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial neural networks ; Biological cells ; Chromium ; Classification algorithms ; Clustering algorithms ; Partitioning algorithms</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1945-1950</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4634064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,2052,27905,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4634064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, R.G.F.</creatorcontrib><creatorcontrib>Silva, K.P.</creatorcontrib><creatorcontrib>Ludermir, T.B.</creatorcontrib><creatorcontrib>de Carvalho, F.A.T.</creatorcontrib><title>An evolutionary approach for the clustering data problem</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>The clustering problem consists in the discovery of interesting groups in a dataset. Such task is very important and widely tackled in the literature. In this paper, we propose an evolutionary method in order to obtain well formed and spatially separated clusters. The proposed algorithm uses a complete solution representation, each partition is represented by a length-variable chromosome . The variation operators were chosen to facilitate the exchange of clustering information between individuals. We have put two complementary clustering criteria together in the fitness function, so that the method can find clusters with arbitrary shapes. The k-means algorithm was the basis of the local search operator, such operator might refine the clustering solutions. The population diversity was an important issue for the algorithm, so a diversity maintenance scheme was employed. Differently from other existing clustering algorithms, our algorithm does not need the setting of the number of clusters in advance. We evaluated the method in different contexts, using both real and simulated data.</description><subject>Algorithm design and analysis</subject><subject>Artificial neural networks</subject><subject>Biological cells</subject><subject>Chromium</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Partitioning algorithms</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc1Loi38AGy8Ypcytid-LKuKR1FVNrCOHGdCg9KkxAkSf0-kFrGZWZyjO5rL2I2AuRDg7lcvy81mLgHsHLVC0HjCpgIlorBS6FM2GadIEMGc_QOw539AOXXJpjF-AkjlnJowu2g4fbf10Fdt47sf7vf7rvVhy8u24_2WeKiH2FNXNR-88L3nI85r2l2xi9LXka6Pe8beHx_els_J-vVptVysk0qC7hNrNHqS3gSTWuMg2FwVwhS29CZHBYUxjlzurA8pSZTGC1Ch0KHMXRqEVTN2d8gd734NFPtsV8VAde0baoeYKUyFRJ2O4u1BrIgo23fVbnwnO_akfgFfb1en</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Soares, R.G.F.</creator><creator>Silva, K.P.</creator><creator>Ludermir, T.B.</creator><creator>de Carvalho, F.A.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>An evolutionary approach for the clustering data problem</title><author>Soares, R.G.F. ; Silva, K.P. ; Ludermir, T.B. ; de Carvalho, F.A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-8764ae2a7c758790c8b3d17d8fa7b430d779e9b98ac5e2427a103cd6cfb95c183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial neural networks</topic><topic>Biological cells</topic><topic>Chromium</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, R.G.F.</creatorcontrib><creatorcontrib>Silva, K.P.</creatorcontrib><creatorcontrib>Ludermir, T.B.</creatorcontrib><creatorcontrib>de Carvalho, F.A.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, R.G.F.</au><au>Silva, K.P.</au><au>Ludermir, T.B.</au><au>de Carvalho, F.A.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An evolutionary approach for the clustering data problem</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>1945</spage><epage>1950</epage><pages>1945-1950</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>The clustering problem consists in the discovery of interesting groups in a dataset. Such task is very important and widely tackled in the literature. In this paper, we propose an evolutionary method in order to obtain well formed and spatially separated clusters. The proposed algorithm uses a complete solution representation, each partition is represented by a length-variable chromosome . The variation operators were chosen to facilitate the exchange of clustering information between individuals. We have put two complementary clustering criteria together in the fitness function, so that the method can find clusters with arbitrary shapes. The k-means algorithm was the basis of the local search operator, such operator might refine the clustering solutions. The population diversity was an important issue for the algorithm, so a diversity maintenance scheme was employed. Differently from other existing clustering algorithms, our algorithm does not need the setting of the number of clusters in advance. We evaluated the method in different contexts, using both real and simulated data.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4634064</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1945-1950
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_proquest_miscellaneous_34512465
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial neural networks
Biological cells
Chromium
Classification algorithms
Clustering algorithms
Partitioning algorithms
title An evolutionary approach for the clustering data problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20evolutionary%20approach%20for%20the%20clustering%20data%20problem&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Soares,%20R.G.F.&rft.date=2008-06-01&rft.volume=10&rft.spage=1945&rft.epage=1950&rft.pages=1945-1950&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4634064&rft_dat=%3Cproquest_6IE%3E34512465%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34512465&rft_id=info:pmid/&rft_ieee_id=4634064&rfr_iscdi=true