Multi-ring Particle Swarm Optimization

Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. By applying PSO to problems where the feasible solutions are too much difficult to find, new ways of solving the problems are required, mainly for hyper dimensional spaces. Many variations on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bastos-Filho, C.J.A., Caraciolo, M.P., Miranda, P.B.C., Carvalho, D.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 111
container_title
container_volume 10
creator Bastos-Filho, C.J.A.
Caraciolo, M.P.
Miranda, P.B.C.
Carvalho, D.F.
description Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. By applying PSO to problems where the feasible solutions are too much difficult to find, new ways of solving the problems are required, mainly for hyper dimensional spaces. Many variations on the basic PSO form have been explored, targeting the velocity update equation. Other approaches attempt to change the structure of the swarm. In this paper a novel PSO topology based on multiples rings is proposed for improving the results achieved focusing on the diversity provided by the ring rotations. A comparison with star and ring topologies was performed. Our simulation results have shown that the proposed topology achieves better results than the well known star and ring topologies.
doi_str_mv 10.1109/SBRN.2008.14
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34512003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4665901</ieee_id><sourcerecordid>34512003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1594-8905481b9ed96a986b97c0a27df4af5b8e173fbd782dd53dca777016372aee633</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1Loird2FgydUvw9fXrjlCVh1QoojBHTuIgo6QNTioEv55COcs3nE9nOIydA88AOF2urp8fM8G5zUAesAkZy40mhahBHLKRQKNSLlAd_XUghZQogPQxG4ESIpWW6JRN-v6d7yIVWiFHbPqwbYaQxrB-S55cHELZ-GT16WKbLLshtOHbDWGzPmMntWt6P_nnmL3ezF9md-lieXs_u1qkARTJ1BJX0kJBviLtyOqCTMmdMFUtXa0K68FgXVTGiqpSWJXOGMNBoxHOe404ZtP9bhc3H1vfD3kb-tI3jVv7zbbPUSrYffArXuzF4L3PuxhaF79yqbUiDvgD38BROw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34512003</pqid></control><display><type>conference_proceeding</type><title>Multi-ring Particle Swarm Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bastos-Filho, C.J.A. ; Caraciolo, M.P. ; Miranda, P.B.C. ; Carvalho, D.F.</creator><creatorcontrib>Bastos-Filho, C.J.A. ; Caraciolo, M.P. ; Miranda, P.B.C. ; Carvalho, D.F.</creatorcontrib><description>Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. By applying PSO to problems where the feasible solutions are too much difficult to find, new ways of solving the problems are required, mainly for hyper dimensional spaces. Many variations on the basic PSO form have been explored, targeting the velocity update equation. Other approaches attempt to change the structure of the swarm. In this paper a novel PSO topology based on multiples rings is proposed for improving the results achieved focusing on the diversity provided by the ring rotations. A comparison with star and ring topologies was performed. Our simulation results have shown that the proposed topology achieves better results than the well known star and ring topologies.</description><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2375-0235</identifier><identifier>EISBN: 9780769533612</identifier><identifier>EISBN: 0769533612</identifier><identifier>DOI: 10.1109/SBRN.2008.14</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Birds ; Computer networks ; Convergence ; Equations ; Explosions ; Neural networks ; Particle swarm optimization ; Random number generation ; Swarm Intelligence ; Topology</subject><ispartof>2008 10th Brazilian Symposium on Neural Networks, 2008, Vol.10, p.111-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4665901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4665901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bastos-Filho, C.J.A.</creatorcontrib><creatorcontrib>Caraciolo, M.P.</creatorcontrib><creatorcontrib>Miranda, P.B.C.</creatorcontrib><creatorcontrib>Carvalho, D.F.</creatorcontrib><title>Multi-ring Particle Swarm Optimization</title><title>2008 10th Brazilian Symposium on Neural Networks</title><addtitle>SBRN</addtitle><description>Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. By applying PSO to problems where the feasible solutions are too much difficult to find, new ways of solving the problems are required, mainly for hyper dimensional spaces. Many variations on the basic PSO form have been explored, targeting the velocity update equation. Other approaches attempt to change the structure of the swarm. In this paper a novel PSO topology based on multiples rings is proposed for improving the results achieved focusing on the diversity provided by the ring rotations. A comparison with star and ring topologies was performed. Our simulation results have shown that the proposed topology achieves better results than the well known star and ring topologies.</description><subject>Acceleration</subject><subject>Birds</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Equations</subject><subject>Explosions</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Random number generation</subject><subject>Swarm Intelligence</subject><subject>Topology</subject><issn>1522-4899</issn><issn>2375-0235</issn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>9780769533612</isbn><isbn>0769533612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkDtPwzAUhc1Loird2FgydUvw9fXrjlCVh1QoojBHTuIgo6QNTioEv55COcs3nE9nOIydA88AOF2urp8fM8G5zUAesAkZy40mhahBHLKRQKNSLlAd_XUghZQogPQxG4ESIpWW6JRN-v6d7yIVWiFHbPqwbYaQxrB-S55cHELZ-GT16WKbLLshtOHbDWGzPmMntWt6P_nnmL3ezF9md-lieXs_u1qkARTJ1BJX0kJBviLtyOqCTMmdMFUtXa0K68FgXVTGiqpSWJXOGMNBoxHOe404ZtP9bhc3H1vfD3kb-tI3jVv7zbbPUSrYffArXuzF4L3PuxhaF79yqbUiDvgD38BROw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Bastos-Filho, C.J.A.</creator><creator>Caraciolo, M.P.</creator><creator>Miranda, P.B.C.</creator><creator>Carvalho, D.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200810</creationdate><title>Multi-ring Particle Swarm Optimization</title><author>Bastos-Filho, C.J.A. ; Caraciolo, M.P. ; Miranda, P.B.C. ; Carvalho, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1594-8905481b9ed96a986b97c0a27df4af5b8e173fbd782dd53dca777016372aee633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Birds</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Equations</topic><topic>Explosions</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Random number generation</topic><topic>Swarm Intelligence</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Bastos-Filho, C.J.A.</creatorcontrib><creatorcontrib>Caraciolo, M.P.</creatorcontrib><creatorcontrib>Miranda, P.B.C.</creatorcontrib><creatorcontrib>Carvalho, D.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bastos-Filho, C.J.A.</au><au>Caraciolo, M.P.</au><au>Miranda, P.B.C.</au><au>Carvalho, D.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-ring Particle Swarm Optimization</atitle><btitle>2008 10th Brazilian Symposium on Neural Networks</btitle><stitle>SBRN</stitle><date>2008-10</date><risdate>2008</risdate><volume>10</volume><spage>111</spage><epage>116</epage><pages>111-116</pages><issn>1522-4899</issn><eissn>2375-0235</eissn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>9780769533612</eisbn><eisbn>0769533612</eisbn><abstract>Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. By applying PSO to problems where the feasible solutions are too much difficult to find, new ways of solving the problems are required, mainly for hyper dimensional spaces. Many variations on the basic PSO form have been explored, targeting the velocity update equation. Other approaches attempt to change the structure of the swarm. In this paper a novel PSO topology based on multiples rings is proposed for improving the results achieved focusing on the diversity provided by the ring rotations. A comparison with star and ring topologies was performed. Our simulation results have shown that the proposed topology achieves better results than the well known star and ring topologies.</abstract><pub>IEEE</pub><doi>10.1109/SBRN.2008.14</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4899
ispartof 2008 10th Brazilian Symposium on Neural Networks, 2008, Vol.10, p.111-116
issn 1522-4899
2375-0235
language eng
recordid cdi_proquest_miscellaneous_34512003
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Birds
Computer networks
Convergence
Equations
Explosions
Neural networks
Particle swarm optimization
Random number generation
Swarm Intelligence
Topology
title Multi-ring Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-ring%20Particle%20Swarm%20Optimization&rft.btitle=2008%2010th%20Brazilian%20Symposium%20on%20Neural%20Networks&rft.au=Bastos-Filho,%20C.J.A.&rft.date=2008-10&rft.volume=10&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.issn=1522-4899&rft.eissn=2375-0235&rft.isbn=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/SBRN.2008.14&rft_dat=%3Cproquest_6IE%3E34512003%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769533612&rft.eisbn_list=0769533612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34512003&rft_id=info:pmid/&rft_ieee_id=4665901&rfr_iscdi=true