Multiple model predictive control for a hybrid proton exchange membrane fuel cell system
This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and ad...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2009-06, Vol.191 (2), p.473-482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 2 |
container_start_page | 473 |
container_title | Journal of power sources |
container_volume | 191 |
creator | Chen, Qihong Gao, Lijun Dougal, Roger A. Quan, Shuhai |
description | This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system. |
doi_str_mv | 10.1016/j.jpowsour.2009.02.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34511667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309002912</els_id><sourcerecordid>34511667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-e5ddcf51405b5bcf67d3dc29824499f1efda16f66c865fd7cd8910658142f9f73</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsgXuCXYcWwnN1DFn1TEBSRuVmqvqaskLnYC9O1x1cKV0x52ZnfmQ-ickpwSKq5W-Wrtv6IfQ14QUuekyAkrD9CEVpJlheT8EE0Ik1UmJWfH6CTGFSGEUkkm6O1pbAe3bgF33kCL1wGM04P7BKx9PwTfYusDbvByswjOpL0ffI_hWy-b_j25oFuEpgdsx-TW0LY4buIA3Sk6sk0b4Ww_p-j17vZl9pDNn-8fZzfzTDPJhgy4MdpyWhK-4AtthTTM6KKuirKsa0vBmoYKK4SuBLdGalPVlAhe0bKwtZVsii53d1OyjxHioDoXtzlSKD9GxUpOqRBbodgJdfAxBrBqHVzXhI2iRG1BqpX6Bam2IBUpVAKZjBf7D03UTWtTXe3in7ugnCecPOmudzpIdT8dBBW1g14noAH0oIx3_736AVODjs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34511667</pqid></control><display><type>article</type><title>Multiple model predictive control for a hybrid proton exchange membrane fuel cell system</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Qihong ; Gao, Lijun ; Dougal, Roger A. ; Quan, Shuhai</creator><creatorcontrib>Chen, Qihong ; Gao, Lijun ; Dougal, Roger A. ; Quan, Shuhai</creatorcontrib><description>This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.02.034</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Capacitors. Resistors. Filters ; Electrical engineering. Electrical power engineering ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hybrid vehicle ; Oxygen control ; PEM fuel cell ; Power management ; Predictive control ; Ultracapacitor ; Various equipment and components</subject><ispartof>Journal of power sources, 2009-06, Vol.191 (2), p.473-482</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-e5ddcf51405b5bcf67d3dc29824499f1efda16f66c865fd7cd8910658142f9f73</citedby><cites>FETCH-LOGICAL-c373t-e5ddcf51405b5bcf67d3dc29824499f1efda16f66c865fd7cd8910658142f9f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775309002912$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21550005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qihong</creatorcontrib><creatorcontrib>Gao, Lijun</creatorcontrib><creatorcontrib>Dougal, Roger A.</creatorcontrib><creatorcontrib>Quan, Shuhai</creatorcontrib><title>Multiple model predictive control for a hybrid proton exchange membrane fuel cell system</title><title>Journal of power sources</title><description>This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system.</description><subject>Applied sciences</subject><subject>Capacitors. Resistors. Filters</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hybrid vehicle</subject><subject>Oxygen control</subject><subject>PEM fuel cell</subject><subject>Power management</subject><subject>Predictive control</subject><subject>Ultracapacitor</subject><subject>Various equipment and components</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsgXuCXYcWwnN1DFn1TEBSRuVmqvqaskLnYC9O1x1cKV0x52ZnfmQ-ickpwSKq5W-Wrtv6IfQ14QUuekyAkrD9CEVpJlheT8EE0Ik1UmJWfH6CTGFSGEUkkm6O1pbAe3bgF33kCL1wGM04P7BKx9PwTfYusDbvByswjOpL0ffI_hWy-b_j25oFuEpgdsx-TW0LY4buIA3Sk6sk0b4Ww_p-j17vZl9pDNn-8fZzfzTDPJhgy4MdpyWhK-4AtthTTM6KKuirKsa0vBmoYKK4SuBLdGalPVlAhe0bKwtZVsii53d1OyjxHioDoXtzlSKD9GxUpOqRBbodgJdfAxBrBqHVzXhI2iRG1BqpX6Bam2IBUpVAKZjBf7D03UTWtTXe3in7ugnCecPOmudzpIdT8dBBW1g14noAH0oIx3_736AVODjs8</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Chen, Qihong</creator><creator>Gao, Lijun</creator><creator>Dougal, Roger A.</creator><creator>Quan, Shuhai</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090615</creationdate><title>Multiple model predictive control for a hybrid proton exchange membrane fuel cell system</title><author>Chen, Qihong ; Gao, Lijun ; Dougal, Roger A. ; Quan, Shuhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-e5ddcf51405b5bcf67d3dc29824499f1efda16f66c865fd7cd8910658142f9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Capacitors. Resistors. Filters</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hybrid vehicle</topic><topic>Oxygen control</topic><topic>PEM fuel cell</topic><topic>Power management</topic><topic>Predictive control</topic><topic>Ultracapacitor</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qihong</creatorcontrib><creatorcontrib>Gao, Lijun</creatorcontrib><creatorcontrib>Dougal, Roger A.</creatorcontrib><creatorcontrib>Quan, Shuhai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qihong</au><au>Gao, Lijun</au><au>Dougal, Roger A.</au><au>Quan, Shuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple model predictive control for a hybrid proton exchange membrane fuel cell system</atitle><jtitle>Journal of power sources</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>191</volume><issue>2</issue><spage>473</spage><epage>482</epage><pages>473-482</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.02.034</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2009-06, Vol.191 (2), p.473-482 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_34511667 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Capacitors. Resistors. Filters Electrical engineering. Electrical power engineering Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Hybrid vehicle Oxygen control PEM fuel cell Power management Predictive control Ultracapacitor Various equipment and components |
title | Multiple model predictive control for a hybrid proton exchange membrane fuel cell system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20model%20predictive%20control%20for%20a%20hybrid%20proton%20exchange%20membrane%20fuel%20cell%20system&rft.jtitle=Journal%20of%20power%20sources&rft.au=Chen,%20Qihong&rft.date=2009-06-15&rft.volume=191&rft.issue=2&rft.spage=473&rft.epage=482&rft.pages=473-482&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.02.034&rft_dat=%3Cproquest_cross%3E34511667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34511667&rft_id=info:pmid/&rft_els_id=S0378775309002912&rfr_iscdi=true |