Multi-valued nonlinear contraction mappings
Two concepts of nonlinear contractions for multi-valued mappings in complete metric spaces are introduced and three fixed point theorems are proved. Presented theorems are generalizations of very recent fixed point theorems due to Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for s...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-10, Vol.71 (7), p.2716-2723 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2723 |
---|---|
container_issue | 7 |
container_start_page | 2716 |
container_title | Nonlinear analysis |
container_volume | 71 |
creator | CIRIC, Ljubomir |
description | Two concepts of nonlinear contractions for multi-valued mappings in complete metric spaces are introduced and three fixed point theorems are proved. Presented theorems are generalizations of very recent fixed point theorems due to Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139] and Feng and Liu [Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112], as well as a fixed point theorem of Mizoguchi and Takahashi [N. Mizoguchi, W. Takahash, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188] and several others. An example is given to show that presented results are genuine generalizations. Our results are also some contribution to an open problem raised by Reich [S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42; S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei 57 (1974), 194-198; S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179–187]. |
doi_str_mv | 10.1016/j.na.2009.01.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34509421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X09001394</els_id><sourcerecordid>34509421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-56f61865ae3c958d19153f0872a98b125506e8b4650ab82a063a6c76cf645e713</originalsourceid><addsrcrecordid>eNp1kL9PwzAQhS0EEqWwM3aBBSXcxTknYUMVv6QiFpDYrKvjIFepU-ykEv89qVqxMd3yvfd0nxCXCCkCqttV6jnNAKoUMEVUR2KCZSETypCOxQSkyhLK1eepOItxBQBYSDURN69D27tky-1g65nvfOu85TAzne8Dm951frbmzcb5r3guThpuo7043Kn4eHx4nz8ni7enl_n9IjGSqE9INQpLRWylqaissUKSDZRFxlW5xIwIlC2XuSLgZZkxKMnKFMo0KidboJyK633vJnTfg429XrtobNuyt90QtcwJqjzbgbAHTehiDLbRm-DWHH40gt5Z0SvtWe-saEA9WhkjV4dujobbJrA3Lv7lshEhomrk7vacHR_dOht0NM56Y2sXrOl13bn_R34Bcgp0sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34509421</pqid></control><display><type>article</type><title>Multi-valued nonlinear contraction mappings</title><source>Elsevier ScienceDirect Journals</source><creator>CIRIC, Ljubomir</creator><creatorcontrib>CIRIC, Ljubomir</creatorcontrib><description>Two concepts of nonlinear contractions for multi-valued mappings in complete metric spaces are introduced and three fixed point theorems are proved. Presented theorems are generalizations of very recent fixed point theorems due to Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139] and Feng and Liu [Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112], as well as a fixed point theorem of Mizoguchi and Takahashi [N. Mizoguchi, W. Takahash, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188] and several others. An example is given to show that presented results are genuine generalizations. Our results are also some contribution to an open problem raised by Reich [S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42; S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei 57 (1974), 194-198; S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179–187].</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.01.116</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Complete metric space ; Exact sciences and technology ; Fixed point ; General topology ; Global analysis, analysis on manifolds ; Hausdorff metric ; Mathematical analysis ; Mathematics ; Multi-valued nonlinear contraction ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2009-10, Vol.71 (7), p.2716-2723</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-56f61865ae3c958d19153f0872a98b125506e8b4650ab82a063a6c76cf645e713</citedby><cites>FETCH-LOGICAL-c355t-56f61865ae3c958d19153f0872a98b125506e8b4650ab82a063a6c76cf645e713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X09001394$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21635559$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CIRIC, Ljubomir</creatorcontrib><title>Multi-valued nonlinear contraction mappings</title><title>Nonlinear analysis</title><description>Two concepts of nonlinear contractions for multi-valued mappings in complete metric spaces are introduced and three fixed point theorems are proved. Presented theorems are generalizations of very recent fixed point theorems due to Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139] and Feng and Liu [Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112], as well as a fixed point theorem of Mizoguchi and Takahashi [N. Mizoguchi, W. Takahash, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188] and several others. An example is given to show that presented results are genuine generalizations. Our results are also some contribution to an open problem raised by Reich [S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42; S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei 57 (1974), 194-198; S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179–187].</description><subject>Complete metric space</subject><subject>Exact sciences and technology</subject><subject>Fixed point</subject><subject>General topology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hausdorff metric</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multi-valued nonlinear contraction</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kL9PwzAQhS0EEqWwM3aBBSXcxTknYUMVv6QiFpDYrKvjIFepU-ykEv89qVqxMd3yvfd0nxCXCCkCqttV6jnNAKoUMEVUR2KCZSETypCOxQSkyhLK1eepOItxBQBYSDURN69D27tky-1g65nvfOu85TAzne8Dm951frbmzcb5r3guThpuo7043Kn4eHx4nz8ni7enl_n9IjGSqE9INQpLRWylqaissUKSDZRFxlW5xIwIlC2XuSLgZZkxKMnKFMo0KidboJyK633vJnTfg429XrtobNuyt90QtcwJqjzbgbAHTehiDLbRm-DWHH40gt5Z0SvtWe-saEA9WhkjV4dujobbJrA3Lv7lshEhomrk7vacHR_dOht0NM56Y2sXrOl13bn_R34Bcgp0sA</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>CIRIC, Ljubomir</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Multi-valued nonlinear contraction mappings</title><author>CIRIC, Ljubomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-56f61865ae3c958d19153f0872a98b125506e8b4650ab82a063a6c76cf645e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Complete metric space</topic><topic>Exact sciences and technology</topic><topic>Fixed point</topic><topic>General topology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hausdorff metric</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multi-valued nonlinear contraction</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CIRIC, Ljubomir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CIRIC, Ljubomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-valued nonlinear contraction mappings</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>71</volume><issue>7</issue><spage>2716</spage><epage>2723</epage><pages>2716-2723</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Two concepts of nonlinear contractions for multi-valued mappings in complete metric spaces are introduced and three fixed point theorems are proved. Presented theorems are generalizations of very recent fixed point theorems due to Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139] and Feng and Liu [Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112], as well as a fixed point theorem of Mizoguchi and Takahashi [N. Mizoguchi, W. Takahash, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188] and several others. An example is given to show that presented results are genuine generalizations. Our results are also some contribution to an open problem raised by Reich [S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42; S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei 57 (1974), 194-198; S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179–187].</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.01.116</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2009-10, Vol.71 (7), p.2716-2723 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_34509421 |
source | Elsevier ScienceDirect Journals |
subjects | Complete metric space Exact sciences and technology Fixed point General topology Global analysis, analysis on manifolds Hausdorff metric Mathematical analysis Mathematics Multi-valued nonlinear contraction Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Multi-valued nonlinear contraction mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-valued%20nonlinear%20contraction%20mappings&rft.jtitle=Nonlinear%20analysis&rft.au=CIRIC,%20Ljubomir&rft.date=2009-10-01&rft.volume=71&rft.issue=7&rft.spage=2716&rft.epage=2723&rft.pages=2716-2723&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.01.116&rft_dat=%3Cproquest_cross%3E34509421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34509421&rft_id=info:pmid/&rft_els_id=S0362546X09001394&rfr_iscdi=true |