Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries

Ultra-fine porous SnO@d2 nanoparticles for lithium ion batteries were prepared by a simple, easily scaled-up molten salt method at 300 'C. The structure and morphology were confirmed by X-ray diffraction and transmission electron microscopy. The as-prepared SnO@d2 had a tetragonal rutile struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry 2009-05, Vol.19 (20), p.3253-3257
Hauptverfasser: Guo, Z P, Du, G D, Nuli, Y, Hassan, M F, Liu, H K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3257
container_issue 20
container_start_page 3253
container_title Journal of materials chemistry
container_volume 19
creator Guo, Z P
Du, G D
Nuli, Y
Hassan, M F
Liu, H K
description Ultra-fine porous SnO@d2 nanoparticles for lithium ion batteries were prepared by a simple, easily scaled-up molten salt method at 300 'C. The structure and morphology were confirmed by X-ray diffraction and transmission electron microscopy. The as-prepared SnO@d2 had a tetragonal rutile structure with crystal sizes around 5 nm. The electrochemical performance was tested compared with commercial nanopowder and previously reported nanowires. The as-prepared nanoparticles delivered a significantly higher discharge capacity and better cycle retention. The nanoparticle electrode delivered a reversible capacity of 410 mAh g@@u-1@ after 100 cycles. Even at high rates, the electrode operated at a good fraction of its capacity. The excellent electrochemical performance of the ultra-fine porous SnO@d2 can be attributed to the ultra-fine crystallites (which tend to decrease the absolute volume changes) and the porous structure (which promotes liquid electrolyte diffusion into the bulk materials and acts as a buffer zone to absorb the volume changes).
doi_str_mv 10.1039/b821519g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_34507252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34507252</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_345072523</originalsourceid><addsrcrecordid>eNqNjkFOwzAQRb0AqQUqcYRZsQvYTk1rVpEQiF0XwLqaJuNmkGMH2wFxAq5NkDgAqy_99_X0hbhU8lrJ2t4ctloZZY8nYimtsZVd6-1CnOX8JqVSm1uzFN-vviSsHAeCMaY4ZXgOu6bTEDDEMX52lGBMNGKiDpqGPxgbQBiiLxQgoy8zji3lfDfXPR97_wXkHLdMocAs6QgGLJQYPbiYwHPpeRoqjgEOWH4J5Qtx6tBnWv3lubh6fHi5f6pm-ftEuewHzi15j4Hmk_t6beRGG13_e_gDvQNZaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34507252</pqid></control><display><type>article</type><title>Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Guo, Z P ; Du, G D ; Nuli, Y ; Hassan, M F ; Liu, H K</creator><creatorcontrib>Guo, Z P ; Du, G D ; Nuli, Y ; Hassan, M F ; Liu, H K</creatorcontrib><description>Ultra-fine porous SnO@d2 nanoparticles for lithium ion batteries were prepared by a simple, easily scaled-up molten salt method at 300 'C. The structure and morphology were confirmed by X-ray diffraction and transmission electron microscopy. The as-prepared SnO@d2 had a tetragonal rutile structure with crystal sizes around 5 nm. The electrochemical performance was tested compared with commercial nanopowder and previously reported nanowires. The as-prepared nanoparticles delivered a significantly higher discharge capacity and better cycle retention. The nanoparticle electrode delivered a reversible capacity of 410 mAh g@@u-1@ after 100 cycles. Even at high rates, the electrode operated at a good fraction of its capacity. The excellent electrochemical performance of the ultra-fine porous SnO@d2 can be attributed to the ultra-fine crystallites (which tend to decrease the absolute volume changes) and the porous structure (which promotes liquid electrolyte diffusion into the bulk materials and acts as a buffer zone to absorb the volume changes).</description><identifier>ISSN: 0959-9428</identifier><identifier>DOI: 10.1039/b821519g</identifier><language>eng</language><ispartof>Journal of materials chemistry, 2009-05, Vol.19 (20), p.3253-3257</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Guo, Z P</creatorcontrib><creatorcontrib>Du, G D</creatorcontrib><creatorcontrib>Nuli, Y</creatorcontrib><creatorcontrib>Hassan, M F</creatorcontrib><creatorcontrib>Liu, H K</creatorcontrib><title>Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries</title><title>Journal of materials chemistry</title><description>Ultra-fine porous SnO@d2 nanoparticles for lithium ion batteries were prepared by a simple, easily scaled-up molten salt method at 300 'C. The structure and morphology were confirmed by X-ray diffraction and transmission electron microscopy. The as-prepared SnO@d2 had a tetragonal rutile structure with crystal sizes around 5 nm. The electrochemical performance was tested compared with commercial nanopowder and previously reported nanowires. The as-prepared nanoparticles delivered a significantly higher discharge capacity and better cycle retention. The nanoparticle electrode delivered a reversible capacity of 410 mAh g@@u-1@ after 100 cycles. Even at high rates, the electrode operated at a good fraction of its capacity. The excellent electrochemical performance of the ultra-fine porous SnO@d2 can be attributed to the ultra-fine crystallites (which tend to decrease the absolute volume changes) and the porous structure (which promotes liquid electrolyte diffusion into the bulk materials and acts as a buffer zone to absorb the volume changes).</description><issn>0959-9428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNjkFOwzAQRb0AqQUqcYRZsQvYTk1rVpEQiF0XwLqaJuNmkGMH2wFxAq5NkDgAqy_99_X0hbhU8lrJ2t4ctloZZY8nYimtsZVd6-1CnOX8JqVSm1uzFN-vviSsHAeCMaY4ZXgOu6bTEDDEMX52lGBMNGKiDpqGPxgbQBiiLxQgoy8zji3lfDfXPR97_wXkHLdMocAs6QgGLJQYPbiYwHPpeRoqjgEOWH4J5Qtx6tBnWv3lubh6fHi5f6pm-ftEuewHzi15j4Hmk_t6beRGG13_e_gDvQNZaw</recordid><startdate>20090528</startdate><enddate>20090528</enddate><creator>Guo, Z P</creator><creator>Du, G D</creator><creator>Nuli, Y</creator><creator>Hassan, M F</creator><creator>Liu, H K</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090528</creationdate><title>Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries</title><author>Guo, Z P ; Du, G D ; Nuli, Y ; Hassan, M F ; Liu, H K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_345072523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Z P</creatorcontrib><creatorcontrib>Du, G D</creatorcontrib><creatorcontrib>Nuli, Y</creatorcontrib><creatorcontrib>Hassan, M F</creatorcontrib><creatorcontrib>Liu, H K</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Z P</au><au>Du, G D</au><au>Nuli, Y</au><au>Hassan, M F</au><au>Liu, H K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry</jtitle><date>2009-05-28</date><risdate>2009</risdate><volume>19</volume><issue>20</issue><spage>3253</spage><epage>3257</epage><pages>3253-3257</pages><issn>0959-9428</issn><abstract>Ultra-fine porous SnO@d2 nanoparticles for lithium ion batteries were prepared by a simple, easily scaled-up molten salt method at 300 'C. The structure and morphology were confirmed by X-ray diffraction and transmission electron microscopy. The as-prepared SnO@d2 had a tetragonal rutile structure with crystal sizes around 5 nm. The electrochemical performance was tested compared with commercial nanopowder and previously reported nanowires. The as-prepared nanoparticles delivered a significantly higher discharge capacity and better cycle retention. The nanoparticle electrode delivered a reversible capacity of 410 mAh g@@u-1@ after 100 cycles. Even at high rates, the electrode operated at a good fraction of its capacity. The excellent electrochemical performance of the ultra-fine porous SnO@d2 can be attributed to the ultra-fine crystallites (which tend to decrease the absolute volume changes) and the porous structure (which promotes liquid electrolyte diffusion into the bulk materials and acts as a buffer zone to absorb the volume changes).</abstract><doi>10.1039/b821519g</doi></addata></record>
fulltext fulltext
identifier ISSN: 0959-9428
ispartof Journal of materials chemistry, 2009-05, Vol.19 (20), p.3253-3257
issn 0959-9428
language eng
recordid cdi_proquest_miscellaneous_34507252
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Ultra-fine porous SnO@d2 nanopowder prepared @@ivia@ a molten salt process: a highly efficient anode material for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-fine%20porous%20SnO@d2%20nanopowder%20prepared%20@@ivia@%20a%20molten%20salt%20process:%20a%20highly%20efficient%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry&rft.au=Guo,%20Z%20P&rft.date=2009-05-28&rft.volume=19&rft.issue=20&rft.spage=3253&rft.epage=3257&rft.pages=3253-3257&rft.issn=0959-9428&rft_id=info:doi/10.1039/b821519g&rft_dat=%3Cproquest%3E34507252%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34507252&rft_id=info:pmid/&rfr_iscdi=true