Neural networks for cognitive sensor networks

The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reznik, L., Von Pless, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue
container_start_page 1235
container_title
container_volume 10
creator Reznik, L.
Von Pless, G.
description The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.
doi_str_mv 10.1109/IJCNN.2008.4633957
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34504156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4633957</ieee_id><sourcerecordid>34504156</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-6a4c6ed5d5017d3064dd7ae2e5192ef68110034f07ead4b713dbe6ce56ab5b203</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loi38AGyyYpcwfsdLVPEoqsIG1pETT5AhTYqdgPh7IrUVmzvSPUcjzRByRSGjFMzt6nlZFBkDyDOhODdSH5E5FUwImjOqjslsSpoKAfrkH0B-egDc8HMyj_EDgHFj-IykBY7BtkmHw08fPmPS9CGp-_fOD_4bk4hdnIoDvSBnjW0jXu7ngrw93L8un9L1y-NqebdOPQM1pMqKWqGTTgLVjoMSzmmLDCU1DBuVT9cAFw1otE5UmnJXoapRKlvJigFfkJvd3m3ov0aMQ7nxsca2tR32Yyy5kCCoVJN4vRM9Ipbb4Dc2_Jb75_A_ZWJUIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34504156</pqid></control><display><type>conference_proceeding</type><title>Neural networks for cognitive sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reznik, L. ; Von Pless, G.</creator><creatorcontrib>Reznik, L. ; Von Pless, G.</creatorcontrib><description>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4633957</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Conferences ; Joints</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1235-1241</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4633957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4633957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reznik, L.</creatorcontrib><creatorcontrib>Von Pless, G.</creatorcontrib><title>Neural networks for cognitive sensor networks</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</description><subject>Artificial neural networks</subject><subject>Conferences</subject><subject>Joints</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc1Loi38AGyyYpcwfsdLVPEoqsIG1pETT5AhTYqdgPh7IrUVmzvSPUcjzRByRSGjFMzt6nlZFBkDyDOhODdSH5E5FUwImjOqjslsSpoKAfrkH0B-egDc8HMyj_EDgHFj-IykBY7BtkmHw08fPmPS9CGp-_fOD_4bk4hdnIoDvSBnjW0jXu7ngrw93L8un9L1y-NqebdOPQM1pMqKWqGTTgLVjoMSzmmLDCU1DBuVT9cAFw1otE5UmnJXoapRKlvJigFfkJvd3m3ov0aMQ7nxsca2tR32Yyy5kCCoVJN4vRM9Ipbb4Dc2_Jb75_A_ZWJUIw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Reznik, L.</creator><creator>Von Pless, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Neural networks for cognitive sensor networks</title><author>Reznik, L. ; Von Pless, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-6a4c6ed5d5017d3064dd7ae2e5192ef68110034f07ead4b713dbe6ce56ab5b203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Conferences</topic><topic>Joints</topic><toplevel>online_resources</toplevel><creatorcontrib>Reznik, L.</creatorcontrib><creatorcontrib>Von Pless, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reznik, L.</au><au>Von Pless, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural networks for cognitive sensor networks</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>1235</spage><epage>1241</epage><pages>1235-1241</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4633957</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1235-1241
issn 2161-4393
1522-4899
2161-4407
language eng
recordid cdi_proquest_miscellaneous_34504156
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Conferences
Joints
title Neural networks for cognitive sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20networks%20for%20cognitive%20sensor%20networks&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Reznik,%20L.&rft.date=2008-06-01&rft.volume=10&rft.spage=1235&rft.epage=1241&rft.pages=1235-1241&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4633957&rft_dat=%3Cproquest_6IE%3E34504156%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34504156&rft_id=info:pmid/&rft_ieee_id=4633957&rfr_iscdi=true