Neural networks for cognitive sensor networks
The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | |
container_start_page | 1235 |
container_title | |
container_volume | 10 |
creator | Reznik, L. Von Pless, G. |
description | The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption. |
doi_str_mv | 10.1109/IJCNN.2008.4633957 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34504156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4633957</ieee_id><sourcerecordid>34504156</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-6a4c6ed5d5017d3064dd7ae2e5192ef68110034f07ead4b713dbe6ce56ab5b203</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loi38AGyyYpcwfsdLVPEoqsIG1pETT5AhTYqdgPh7IrUVmzvSPUcjzRByRSGjFMzt6nlZFBkDyDOhODdSH5E5FUwImjOqjslsSpoKAfrkH0B-egDc8HMyj_EDgHFj-IykBY7BtkmHw08fPmPS9CGp-_fOD_4bk4hdnIoDvSBnjW0jXu7ngrw93L8un9L1y-NqebdOPQM1pMqKWqGTTgLVjoMSzmmLDCU1DBuVT9cAFw1otE5UmnJXoapRKlvJigFfkJvd3m3ov0aMQ7nxsca2tR32Yyy5kCCoVJN4vRM9Ipbb4Dc2_Jb75_A_ZWJUIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>34504156</pqid></control><display><type>conference_proceeding</type><title>Neural networks for cognitive sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reznik, L. ; Von Pless, G.</creator><creatorcontrib>Reznik, L. ; Von Pless, G.</creatorcontrib><description>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISSN: 1522-4899</identifier><identifier>ISBN: 1424418208</identifier><identifier>ISBN: 9781424418206</identifier><identifier>ISBN: 9781424432196</identifier><identifier>ISBN: 1424432197</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 1424418216</identifier><identifier>EISBN: 9781424418213</identifier><identifier>DOI: 10.1109/IJCNN.2008.4633957</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Conferences ; Joints</subject><ispartof>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1235-1241</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4633957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4633957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reznik, L.</creatorcontrib><creatorcontrib>Von Pless, G.</creatorcontrib><title>Neural networks for cognitive sensor networks</title><title>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</title><addtitle>IJCNN</addtitle><description>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</description><subject>Artificial neural networks</subject><subject>Conferences</subject><subject>Joints</subject><issn>2161-4393</issn><issn>1522-4899</issn><issn>2161-4407</issn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><isbn>1424418216</isbn><isbn>9781424418213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc1Loi38AGyyYpcwfsdLVPEoqsIG1pETT5AhTYqdgPh7IrUVmzvSPUcjzRByRSGjFMzt6nlZFBkDyDOhODdSH5E5FUwImjOqjslsSpoKAfrkH0B-egDc8HMyj_EDgHFj-IykBY7BtkmHw08fPmPS9CGp-_fOD_4bk4hdnIoDvSBnjW0jXu7ngrw93L8un9L1y-NqebdOPQM1pMqKWqGTTgLVjoMSzmmLDCU1DBuVT9cAFw1otE5UmnJXoapRKlvJigFfkJvd3m3ov0aMQ7nxsca2tR32Yyy5kCCoVJN4vRM9Ipbb4Dc2_Jb75_A_ZWJUIw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Reznik, L.</creator><creator>Von Pless, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Neural networks for cognitive sensor networks</title><author>Reznik, L. ; Von Pless, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-6a4c6ed5d5017d3064dd7ae2e5192ef68110034f07ead4b713dbe6ce56ab5b203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Conferences</topic><topic>Joints</topic><toplevel>online_resources</toplevel><creatorcontrib>Reznik, L.</creatorcontrib><creatorcontrib>Von Pless, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reznik, L.</au><au>Von Pless, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural networks for cognitive sensor networks</atitle><btitle>2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)</btitle><stitle>IJCNN</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>10</volume><spage>1235</spage><epage>1241</epage><pages>1235-1241</pages><issn>2161-4393</issn><issn>1522-4899</issn><eissn>2161-4407</eissn><isbn>1424418208</isbn><isbn>9781424418206</isbn><isbn>9781424432196</isbn><isbn>1424432197</isbn><eisbn>1424418216</eisbn><eisbn>9781424418213</eisbn><abstract>The paper puts forward a concept of cognitive sensor networks and investigates a feasibility of artificial neural networks application for its realization. It describes a design of novel hierarchical configurations imitating the structural topology of brain-like architectures. They are composed from artificial neural networks distributed over network platforms with limited resources. The paper examines a cognition idea based on its implementation through the signal change detection. The novel multilevel neural networks architectures are designed and tested in sensor networks built from Crossbow Inc. sensor kits. The results are compared against conventional multilayer perceptron structures in terms of both functional efficiency and resource consumption.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2008.4633957</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, Vol.10, p.1235-1241 |
issn | 2161-4393 1522-4899 2161-4407 |
language | eng |
recordid | cdi_proquest_miscellaneous_34504156 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Conferences Joints |
title | Neural networks for cognitive sensor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20networks%20for%20cognitive%20sensor%20networks&rft.btitle=2008%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=Reznik,%20L.&rft.date=2008-06-01&rft.volume=10&rft.spage=1235&rft.epage=1241&rft.pages=1235-1241&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424418208&rft.isbn_list=9781424418206&rft.isbn_list=9781424432196&rft.isbn_list=1424432197&rft_id=info:doi/10.1109/IJCNN.2008.4633957&rft_dat=%3Cproquest_6IE%3E34504156%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424418216&rft.eisbn_list=9781424418213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34504156&rft_id=info:pmid/&rft_ieee_id=4633957&rfr_iscdi=true |