Joint market clearing in a stochastic framework considering power system security

This paper presents a new stochastic framework for provision of reserve requirements (spinning and non-spinning reserves) as well as energy in day-ahead simultaneous auctions by pool-based aggregated market scheme. The uncertainty of generating units in the form of system contingencies are considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2009-09, Vol.86 (9), p.1675-1682
Hauptverfasser: Aghaei, J., Shayanfar, H.A., Amjady, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1682
container_issue 9
container_start_page 1675
container_title Applied energy
container_volume 86
creator Aghaei, J.
Shayanfar, H.A.
Amjady, N.
description This paper presents a new stochastic framework for provision of reserve requirements (spinning and non-spinning reserves) as well as energy in day-ahead simultaneous auctions by pool-based aggregated market scheme. The uncertainty of generating units in the form of system contingencies are considered in the market clearing procedure by the stochastic model. The solution methodology consists of two stages, which firstly, employs Monte–Carlo Simulation (MCS) for random scenario generation. Then, the stochastic market clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. The objective function of each of these deterministic optimization problems consists of offered cost function (including both energy and reserves offer costs), Lost Opportunity Cost (LOC) and Expected Interruption Cost (EIC). Each optimization problem is solved considering AC power flow and security constraints of the power system. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS) and simulation studies are carried out to examine the effectiveness of the proposed method.
doi_str_mv 10.1016/j.apenergy.2009.01.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34502378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261909000336</els_id><sourcerecordid>20747035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-30394bfd78c752c660787575630d528fd3ec7a71b12cb0f97a1a1034cd043f7b3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhiMEEkvhLyBf4JYwthPbuYEqaEErIaT2bHknk9bbfGF7W-Xf4-2WXnt4Zy7POxo9RfGRQ8WBqy_7yi00UbhZKwHQVsArEPxVseFGi7Ll3LwuNiBBlULx9m3xLsY9QEYEbIo_v2Y_JTa6cEeJ4UAu-OmG-Yk5FtOMty4mj6wPbqSHOdwxnKfoO3qklvmBAotrTDSySHgIPq3vize9GyJ9eNpnxfWP71fnl-X298XP82_bEmstUylBtvWu77RB3QhUCrTRjW6UhK4Rpu8koXaa77jAHfStdtxxkDV2UMte7-RZ8fl0dwnz3wPFZEcfkYbBTTQfopV1A0Jq8yIoQNcaZJNBdQIxzDEG6u0SfDazWg72qNru7X_V9qjaArfZYy5uT8VAC-Fzi4jccuTtvZXOqDzWnMemdD7nuJccrnRjuTLC3qYxn_v09LCL6IbsfkIfn88KXhvVapm5ryeOsuZ7T8FG9DQhdT4QJtvN_qXP_wFGy7Hn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20747035</pqid></control><display><type>article</type><title>Joint market clearing in a stochastic framework considering power system security</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Aghaei, J. ; Shayanfar, H.A. ; Amjady, N.</creator><creatorcontrib>Aghaei, J. ; Shayanfar, H.A. ; Amjady, N.</creatorcontrib><description>This paper presents a new stochastic framework for provision of reserve requirements (spinning and non-spinning reserves) as well as energy in day-ahead simultaneous auctions by pool-based aggregated market scheme. The uncertainty of generating units in the form of system contingencies are considered in the market clearing procedure by the stochastic model. The solution methodology consists of two stages, which firstly, employs Monte–Carlo Simulation (MCS) for random scenario generation. Then, the stochastic market clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. The objective function of each of these deterministic optimization problems consists of offered cost function (including both energy and reserves offer costs), Lost Opportunity Cost (LOC) and Expected Interruption Cost (EIC). Each optimization problem is solved considering AC power flow and security constraints of the power system. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS) and simulation studies are carried out to examine the effectiveness of the proposed method.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2009.01.021</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Economic data ; Electric energy ; Energy ; Energy economics ; Exact sciences and technology ; Expected interruption cost ; General, economic and professional studies ; Lost opportunity cost ; Market clearing ; Market clearing Stochastic optimization Offer cost Expected interruption cost Lost opportunity cost ; Methodology. Modelling ; Offer cost ; Stochastic optimization</subject><ispartof>Applied energy, 2009-09, Vol.86 (9), p.1675-1682</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-30394bfd78c752c660787575630d528fd3ec7a71b12cb0f97a1a1034cd043f7b3</citedby><cites>FETCH-LOGICAL-c473t-30394bfd78c752c660787575630d528fd3ec7a71b12cb0f97a1a1034cd043f7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2009.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21486973$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a86_3ay_3a2009_3ai_3a9_3ap_3a1675-1682.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Aghaei, J.</creatorcontrib><creatorcontrib>Shayanfar, H.A.</creatorcontrib><creatorcontrib>Amjady, N.</creatorcontrib><title>Joint market clearing in a stochastic framework considering power system security</title><title>Applied energy</title><description>This paper presents a new stochastic framework for provision of reserve requirements (spinning and non-spinning reserves) as well as energy in day-ahead simultaneous auctions by pool-based aggregated market scheme. The uncertainty of generating units in the form of system contingencies are considered in the market clearing procedure by the stochastic model. The solution methodology consists of two stages, which firstly, employs Monte–Carlo Simulation (MCS) for random scenario generation. Then, the stochastic market clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. The objective function of each of these deterministic optimization problems consists of offered cost function (including both energy and reserves offer costs), Lost Opportunity Cost (LOC) and Expected Interruption Cost (EIC). Each optimization problem is solved considering AC power flow and security constraints of the power system. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS) and simulation studies are carried out to examine the effectiveness of the proposed method.</description><subject>Applied sciences</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>Expected interruption cost</subject><subject>General, economic and professional studies</subject><subject>Lost opportunity cost</subject><subject>Market clearing</subject><subject>Market clearing Stochastic optimization Offer cost Expected interruption cost Lost opportunity cost</subject><subject>Methodology. Modelling</subject><subject>Offer cost</subject><subject>Stochastic optimization</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE1v1DAQhiMEEkvhLyBf4JYwthPbuYEqaEErIaT2bHknk9bbfGF7W-Xf4-2WXnt4Zy7POxo9RfGRQ8WBqy_7yi00UbhZKwHQVsArEPxVseFGi7Ll3LwuNiBBlULx9m3xLsY9QEYEbIo_v2Y_JTa6cEeJ4UAu-OmG-Yk5FtOMty4mj6wPbqSHOdwxnKfoO3qklvmBAotrTDSySHgIPq3vize9GyJ9eNpnxfWP71fnl-X298XP82_bEmstUylBtvWu77RB3QhUCrTRjW6UhK4Rpu8koXaa77jAHfStdtxxkDV2UMte7-RZ8fl0dwnz3wPFZEcfkYbBTTQfopV1A0Jq8yIoQNcaZJNBdQIxzDEG6u0SfDazWg72qNru7X_V9qjaArfZYy5uT8VAC-Fzi4jccuTtvZXOqDzWnMemdD7nuJccrnRjuTLC3qYxn_v09LCL6IbsfkIfn88KXhvVapm5ryeOsuZ7T8FG9DQhdT4QJtvN_qXP_wFGy7Hn</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Aghaei, J.</creator><creator>Shayanfar, H.A.</creator><creator>Amjady, N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090901</creationdate><title>Joint market clearing in a stochastic framework considering power system security</title><author>Aghaei, J. ; Shayanfar, H.A. ; Amjady, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-30394bfd78c752c660787575630d528fd3ec7a71b12cb0f97a1a1034cd043f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>Expected interruption cost</topic><topic>General, economic and professional studies</topic><topic>Lost opportunity cost</topic><topic>Market clearing</topic><topic>Market clearing Stochastic optimization Offer cost Expected interruption cost Lost opportunity cost</topic><topic>Methodology. Modelling</topic><topic>Offer cost</topic><topic>Stochastic optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghaei, J.</creatorcontrib><creatorcontrib>Shayanfar, H.A.</creatorcontrib><creatorcontrib>Amjady, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghaei, J.</au><au>Shayanfar, H.A.</au><au>Amjady, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint market clearing in a stochastic framework considering power system security</atitle><jtitle>Applied energy</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>86</volume><issue>9</issue><spage>1675</spage><epage>1682</epage><pages>1675-1682</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This paper presents a new stochastic framework for provision of reserve requirements (spinning and non-spinning reserves) as well as energy in day-ahead simultaneous auctions by pool-based aggregated market scheme. The uncertainty of generating units in the form of system contingencies are considered in the market clearing procedure by the stochastic model. The solution methodology consists of two stages, which firstly, employs Monte–Carlo Simulation (MCS) for random scenario generation. Then, the stochastic market clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. The objective function of each of these deterministic optimization problems consists of offered cost function (including both energy and reserves offer costs), Lost Opportunity Cost (LOC) and Expected Interruption Cost (EIC). Each optimization problem is solved considering AC power flow and security constraints of the power system. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS) and simulation studies are carried out to examine the effectiveness of the proposed method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2009.01.021</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2009-09, Vol.86 (9), p.1675-1682
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_34502378
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Economic data
Electric energy
Energy
Energy economics
Exact sciences and technology
Expected interruption cost
General, economic and professional studies
Lost opportunity cost
Market clearing
Market clearing Stochastic optimization Offer cost Expected interruption cost Lost opportunity cost
Methodology. Modelling
Offer cost
Stochastic optimization
title Joint market clearing in a stochastic framework considering power system security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20market%20clearing%20in%20a%20stochastic%20framework%20considering%20power%20system%20security&rft.jtitle=Applied%20energy&rft.au=Aghaei,%20J.&rft.date=2009-09-01&rft.volume=86&rft.issue=9&rft.spage=1675&rft.epage=1682&rft.pages=1675-1682&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2009.01.021&rft_dat=%3Cproquest_cross%3E20747035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20747035&rft_id=info:pmid/&rft_els_id=S0306261909000336&rfr_iscdi=true