Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints
This paper presents a novel, two-level mixed-integer programming model of scheduling N jobs on M parallel machines that minimizes bi-objectives, namely the number of tardy jobs and the total completion time of all the jobs. The proposed model considers unrelated parallel machines. The jobs have non-...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2009-12, Vol.36 (12), p.3224-3230 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel, two-level mixed-integer programming model of scheduling
N jobs on
M parallel machines that minimizes bi-objectives, namely the number of tardy jobs and the total completion time of all the jobs. The proposed model considers unrelated parallel machines. The jobs have non-identical due dates and ready times, and there are some precedence relations between them. Furthermore, sequence-dependent setup times, which are included in the proposed model, may be different for each machine depending on their characteristics. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time using traditional approaches or optimization tools is extremely difficult. This paper proposes an efficient genetic algorithm (GA) to solve the bi-objective parallel machine scheduling problem. The performance of the presented model and the proposed GA is verified by a number of numerical experiments. The related results show the effectiveness of the proposed model and GA for small and large-sized problems. |
---|---|
ISSN: | 0305-0548 1873-765X 0305-0548 |
DOI: | 10.1016/j.cor.2009.02.012 |