Joint beamforming for multiaccess MIMO systems with finite rate feedback
We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2009-05, Vol.8 (5), p.2618-2628 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2628 |
---|---|
container_issue | 5 |
container_start_page | 2618 |
container_title | IEEE transactions on wireless communications |
container_volume | 8 |
creator | Wei Dai Rider, B.C. Youjian Liu |
description | We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance. |
doi_str_mv | 10.1109/TWC.2009.080534 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34497135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4927477</ieee_id><sourcerecordid>1031301915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</originalsourceid><addsrcrecordid>eNp9kbtLxEAQxoMo-KwtbIKg2ORuZ5_ZUg6fKNecWIbNZqKreZy7OcT_3g13XGFhMzMwv-8bhi9JToFMAIieLl5nE0qInpCcCMZ3kgMQIs8o5fnuODOZAVVyPzkM4YMQUFKIg-T-sXfdkJZo2rr3reve0tjTdtUMzliLIaTPD8_zNPyEAduQfrvhPa1d5wZMvYmlRqxKYz-Pk73aNAFPNv0oebm9Wczus6f53cPs-imznLIhqypk2gira8k0L6VGgawUrJK8stLIUgHPmTCUV9TkOUDNS641RrU2mit2lFyufZe-_1phGIrWBYtNYzrsV6FgnGsFTETw6l8QCANGQMOInv9BP_qV7-IbRS6BSJqL8fB0DVnfh-CxLpbetcb_RKdiTKCICRRjAsU6gai42NiaYE1Te9NZF7YyCooDaBK5szXnEHG75poqrhT7BTrVjOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861062857</pqid></control><display><type>article</type><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><source>IEEE Electronic Library (IEL)</source><creator>Wei Dai ; Rider, B.C. ; Youjian Liu</creator><creatorcontrib>Wei Dai ; Rider, B.C. ; Youjian Liu</creatorcontrib><description>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2009.080534</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Base stations ; Beamforming ; Broadcasting ; Coding, codes ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Feedback ; Grassmann manifold ; Information, signal and communications theory ; limited feedback ; Mathematical analysis ; Matrix theory ; MIMO ; multiaccess channels ; Multiaccess communication ; Quantization ; Sampling, quantization ; Signal and communications theory ; Signal, noise ; Stations ; Statistics ; Strategy ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Throughput ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitting antennas ; Vector quantization</subject><ispartof>IEEE transactions on wireless communications, 2009-05, Vol.8 (5), p.2618-2628</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</citedby><cites>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4927477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4927477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21741190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Dai</creatorcontrib><creatorcontrib>Rider, B.C.</creatorcontrib><creatorcontrib>Youjian Liu</creatorcontrib><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Broadcasting</subject><subject>Coding, codes</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Grassmann manifold</subject><subject>Information, signal and communications theory</subject><subject>limited feedback</subject><subject>Mathematical analysis</subject><subject>Matrix theory</subject><subject>MIMO</subject><subject>multiaccess channels</subject><subject>Multiaccess communication</subject><subject>Quantization</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Stations</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitting antennas</subject><subject>Vector quantization</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kbtLxEAQxoMo-KwtbIKg2ORuZ5_ZUg6fKNecWIbNZqKreZy7OcT_3g13XGFhMzMwv-8bhi9JToFMAIieLl5nE0qInpCcCMZ3kgMQIs8o5fnuODOZAVVyPzkM4YMQUFKIg-T-sXfdkJZo2rr3reve0tjTdtUMzliLIaTPD8_zNPyEAduQfrvhPa1d5wZMvYmlRqxKYz-Pk73aNAFPNv0oebm9Wczus6f53cPs-imznLIhqypk2gira8k0L6VGgawUrJK8stLIUgHPmTCUV9TkOUDNS641RrU2mit2lFyufZe-_1phGIrWBYtNYzrsV6FgnGsFTETw6l8QCANGQMOInv9BP_qV7-IbRS6BSJqL8fB0DVnfh-CxLpbetcb_RKdiTKCICRRjAsU6gai42NiaYE1Te9NZF7YyCooDaBK5szXnEHG75poqrhT7BTrVjOo</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Wei Dai</creator><creator>Rider, B.C.</creator><creator>Youjian Liu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><author>Wei Dai ; Rider, B.C. ; Youjian Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Broadcasting</topic><topic>Coding, codes</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Grassmann manifold</topic><topic>Information, signal and communications theory</topic><topic>limited feedback</topic><topic>Mathematical analysis</topic><topic>Matrix theory</topic><topic>MIMO</topic><topic>multiaccess channels</topic><topic>Multiaccess communication</topic><topic>Quantization</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Stations</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitting antennas</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Dai</creatorcontrib><creatorcontrib>Rider, B.C.</creatorcontrib><creatorcontrib>Youjian Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Dai</au><au>Rider, B.C.</au><au>Youjian Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint beamforming for multiaccess MIMO systems with finite rate feedback</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>8</volume><issue>5</issue><spage>2618</spage><epage>2628</epage><pages>2618-2628</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2009.080534</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2009-05, Vol.8 (5), p.2618-2628 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_miscellaneous_34497135 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Array signal processing Base stations Beamforming Broadcasting Coding, codes Detection, estimation, filtering, equalization, prediction Exact sciences and technology Feedback Grassmann manifold Information, signal and communications theory limited feedback Mathematical analysis Matrix theory MIMO multiaccess channels Multiaccess communication Quantization Sampling, quantization Signal and communications theory Signal, noise Stations Statistics Strategy Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Throughput Transmission and modulation (techniques and equipments) Transmitters Transmitting antennas Vector quantization |
title | Joint beamforming for multiaccess MIMO systems with finite rate feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20beamforming%20for%20multiaccess%20MIMO%20systems%20with%20finite%20rate%20feedback&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wei%20Dai&rft.date=2009-05-01&rft.volume=8&rft.issue=5&rft.spage=2618&rft.epage=2628&rft.pages=2618-2628&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2009.080534&rft_dat=%3Cproquest_RIE%3E1031301915%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861062857&rft_id=info:pmid/&rft_ieee_id=4927477&rfr_iscdi=true |