Joint beamforming for multiaccess MIMO systems with finite rate feedback

We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2009-05, Vol.8 (5), p.2618-2628
Hauptverfasser: Wei Dai, Rider, B.C., Youjian Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2628
container_issue 5
container_start_page 2618
container_title IEEE transactions on wireless communications
container_volume 8
creator Wei Dai
Rider, B.C.
Youjian Liu
description We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.
doi_str_mv 10.1109/TWC.2009.080534
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34497135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4927477</ieee_id><sourcerecordid>1031301915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</originalsourceid><addsrcrecordid>eNp9kbtLxEAQxoMo-KwtbIKg2ORuZ5_ZUg6fKNecWIbNZqKreZy7OcT_3g13XGFhMzMwv-8bhi9JToFMAIieLl5nE0qInpCcCMZ3kgMQIs8o5fnuODOZAVVyPzkM4YMQUFKIg-T-sXfdkJZo2rr3reve0tjTdtUMzliLIaTPD8_zNPyEAduQfrvhPa1d5wZMvYmlRqxKYz-Pk73aNAFPNv0oebm9Wczus6f53cPs-imznLIhqypk2gira8k0L6VGgawUrJK8stLIUgHPmTCUV9TkOUDNS641RrU2mit2lFyufZe-_1phGIrWBYtNYzrsV6FgnGsFTETw6l8QCANGQMOInv9BP_qV7-IbRS6BSJqL8fB0DVnfh-CxLpbetcb_RKdiTKCICRRjAsU6gai42NiaYE1Te9NZF7YyCooDaBK5szXnEHG75poqrhT7BTrVjOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861062857</pqid></control><display><type>article</type><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><source>IEEE Electronic Library (IEL)</source><creator>Wei Dai ; Rider, B.C. ; Youjian Liu</creator><creatorcontrib>Wei Dai ; Rider, B.C. ; Youjian Liu</creatorcontrib><description>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2009.080534</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Base stations ; Beamforming ; Broadcasting ; Coding, codes ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Feedback ; Grassmann manifold ; Information, signal and communications theory ; limited feedback ; Mathematical analysis ; Matrix theory ; MIMO ; multiaccess channels ; Multiaccess communication ; Quantization ; Sampling, quantization ; Signal and communications theory ; Signal, noise ; Stations ; Statistics ; Strategy ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Throughput ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitting antennas ; Vector quantization</subject><ispartof>IEEE transactions on wireless communications, 2009-05, Vol.8 (5), p.2618-2628</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</citedby><cites>FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4927477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4927477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21741190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei Dai</creatorcontrib><creatorcontrib>Rider, B.C.</creatorcontrib><creatorcontrib>Youjian Liu</creatorcontrib><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Broadcasting</subject><subject>Coding, codes</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Grassmann manifold</subject><subject>Information, signal and communications theory</subject><subject>limited feedback</subject><subject>Mathematical analysis</subject><subject>Matrix theory</subject><subject>MIMO</subject><subject>multiaccess channels</subject><subject>Multiaccess communication</subject><subject>Quantization</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Stations</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitting antennas</subject><subject>Vector quantization</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kbtLxEAQxoMo-KwtbIKg2ORuZ5_ZUg6fKNecWIbNZqKreZy7OcT_3g13XGFhMzMwv-8bhi9JToFMAIieLl5nE0qInpCcCMZ3kgMQIs8o5fnuODOZAVVyPzkM4YMQUFKIg-T-sXfdkJZo2rr3reve0tjTdtUMzliLIaTPD8_zNPyEAduQfrvhPa1d5wZMvYmlRqxKYz-Pk73aNAFPNv0oebm9Wczus6f53cPs-imznLIhqypk2gira8k0L6VGgawUrJK8stLIUgHPmTCUV9TkOUDNS641RrU2mit2lFyufZe-_1phGIrWBYtNYzrsV6FgnGsFTETw6l8QCANGQMOInv9BP_qV7-IbRS6BSJqL8fB0DVnfh-CxLpbetcb_RKdiTKCICRRjAsU6gai42NiaYE1Te9NZF7YyCooDaBK5szXnEHG75poqrhT7BTrVjOo</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Wei Dai</creator><creator>Rider, B.C.</creator><creator>Youjian Liu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Joint beamforming for multiaccess MIMO systems with finite rate feedback</title><author>Wei Dai ; Rider, B.C. ; Youjian Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-dde39a5c9f6394b69e5e3b53d64dc6a6b714835a24d2a8811f4b499ec429a9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Broadcasting</topic><topic>Coding, codes</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Grassmann manifold</topic><topic>Information, signal and communications theory</topic><topic>limited feedback</topic><topic>Mathematical analysis</topic><topic>Matrix theory</topic><topic>MIMO</topic><topic>multiaccess channels</topic><topic>Multiaccess communication</topic><topic>Quantization</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Stations</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitting antennas</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Dai</creatorcontrib><creatorcontrib>Rider, B.C.</creatorcontrib><creatorcontrib>Youjian Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Dai</au><au>Rider, B.C.</au><au>Youjian Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint beamforming for multiaccess MIMO systems with finite rate feedback</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>8</volume><issue>5</issue><spage>2618</spage><epage>2628</epage><pages>2618-2628</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider multiaccess multiple-input multiple-output (MIMO) systems with finite rate feedback with the aim of understanding how to efficiently employ the given feedback resource to maximize the sum rate. A joint quantization and feedback strategy is proposed: the base station selects the strongest users, jointly quantizes their strongest eigen-channel vectors and broadcasts a common feedback to all the users. This joint strategy differs from an individual strategy in which quantization and feedback are performed independently across users, and it improves upon the individual strategy in the same way that vector quantization improves upon scalar quantization. To analyze the proposed strategy, the effect of user selection is described by extreme order statistics, while the effect of joint quantization is quantified through what we term "the composite Grassmann manifold". The achievable sum rate is then estimated using random matrix theory providing an analytic benchmark for the performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2009.080534</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2009-05, Vol.8 (5), p.2618-2628
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_miscellaneous_34497135
source IEEE Electronic Library (IEL)
subjects Applied sciences
Array signal processing
Base stations
Beamforming
Broadcasting
Coding, codes
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Feedback
Grassmann manifold
Information, signal and communications theory
limited feedback
Mathematical analysis
Matrix theory
MIMO
multiaccess channels
Multiaccess communication
Quantization
Sampling, quantization
Signal and communications theory
Signal, noise
Stations
Statistics
Strategy
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Throughput
Transmission and modulation (techniques and equipments)
Transmitters
Transmitting antennas
Vector quantization
title Joint beamforming for multiaccess MIMO systems with finite rate feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20beamforming%20for%20multiaccess%20MIMO%20systems%20with%20finite%20rate%20feedback&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wei%20Dai&rft.date=2009-05-01&rft.volume=8&rft.issue=5&rft.spage=2618&rft.epage=2628&rft.pages=2618-2628&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2009.080534&rft_dat=%3Cproquest_RIE%3E1031301915%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861062857&rft_id=info:pmid/&rft_ieee_id=4927477&rfr_iscdi=true