A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery
Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solv...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2007-12, Vol.1 (4), p.564-574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 4 |
container_start_page | 564 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 1 |
creator | Combettes, P.L. Pesquet, J.-C. |
description | Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated. |
doi_str_mv | 10.1109/JSTSP.2007.910264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34496809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407760</ieee_id><sourcerecordid>34496809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhCMEEqXwAIhLxAGJQ8o6duL4WJWfgipATcvVclynNUrjYqcVfXscgnrgtKvRtzu7miC4RDBACNjdSz7L3wcxAB0wBHFKjoIeYgRFQDJy3PY4jkiS4NPgzLlPgISmiPSC-TC8N9tlJVw0FXJVGrsI802lm0bXy3C42Vjj5bAx4aup3dqYZhWOTL1T3-GHsFo02tSiCnO9bMtUSbNTdn8enJSicurir_aD-ePDbDSOJm9Pz6PhJJIkxk2UqVhCBiorCgpQYIGJXBQJK0uKWJqljDKWpRIVsZRESiylXCCMMS3KYsFUgvvBbbd3JSq-sXot7J4bofl4OOGtBpDGKIthhzx707H-pa-tcg1faydVVYlama3jmBDvCcyD1__AT7O1_j3Hs5T4e0lCPYQ6SFrjnFXlwR4BbxPhv4nwNhHeJeJnrroZrZQ68IQApSngH8DghvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864080457</pqid></control><display><type>article</type><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Combettes, P.L. ; Pesquet, J.-C.</creator><creatorcontrib>Combettes, P.L. ; Pesquet, J.-C.</creatorcontrib><description>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2007.910264</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation and Language ; Computer Science ; Convergence ; Convex optimization ; denoising ; Douglas-Rachford ; frame ; Hilbert space ; Image denoising ; Mathematical model ; Noise reduction ; nondifferentiable optimization ; Poisson noise ; Projection algorithms ; proximal algorithm ; Signal analysis ; Signal processing ; Signal processing algorithms ; wavelets</subject><ispartof>IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.564-574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</citedby><cites>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</cites><orcidid>0000-0002-5943-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4407760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00621820$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Pesquet, J.-C.</creatorcontrib><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</description><subject>Computation and Language</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Convex optimization</subject><subject>denoising</subject><subject>Douglas-Rachford</subject><subject>frame</subject><subject>Hilbert space</subject><subject>Image denoising</subject><subject>Mathematical model</subject><subject>Noise reduction</subject><subject>nondifferentiable optimization</subject><subject>Poisson noise</subject><subject>Projection algorithms</subject><subject>proximal algorithm</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>wavelets</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1OwzAQhCMEEqXwAIhLxAGJQ8o6duL4WJWfgipATcvVclynNUrjYqcVfXscgnrgtKvRtzu7miC4RDBACNjdSz7L3wcxAB0wBHFKjoIeYgRFQDJy3PY4jkiS4NPgzLlPgISmiPSC-TC8N9tlJVw0FXJVGrsI802lm0bXy3C42Vjj5bAx4aup3dqYZhWOTL1T3-GHsFo02tSiCnO9bMtUSbNTdn8enJSicurir_aD-ePDbDSOJm9Pz6PhJJIkxk2UqVhCBiorCgpQYIGJXBQJK0uKWJqljDKWpRIVsZRESiylXCCMMS3KYsFUgvvBbbd3JSq-sXot7J4bofl4OOGtBpDGKIthhzx707H-pa-tcg1faydVVYlama3jmBDvCcyD1__AT7O1_j3Hs5T4e0lCPYQ6SFrjnFXlwR4BbxPhv4nwNhHeJeJnrroZrZQ68IQApSngH8DghvE</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Combettes, P.L.</creator><creator>Pesquet, J.-C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></search><sort><creationdate>20071201</creationdate><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><author>Combettes, P.L. ; Pesquet, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computation and Language</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Convex optimization</topic><topic>denoising</topic><topic>Douglas-Rachford</topic><topic>frame</topic><topic>Hilbert space</topic><topic>Image denoising</topic><topic>Mathematical model</topic><topic>Noise reduction</topic><topic>nondifferentiable optimization</topic><topic>Poisson noise</topic><topic>Projection algorithms</topic><topic>proximal algorithm</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Pesquet, J.-C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Combettes, P.L.</au><au>Pesquet, J.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>564</spage><epage>574</epage><pages>564-574</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2007.910264</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.564-574 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_miscellaneous_34496809 |
source | IEEE Electronic Library (IEL) |
subjects | Computation and Language Computer Science Convergence Convex optimization denoising Douglas-Rachford frame Hilbert space Image denoising Mathematical model Noise reduction nondifferentiable optimization Poisson noise Projection algorithms proximal algorithm Signal analysis Signal processing Signal processing algorithms wavelets |
title | A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Douglas-Rachford%20Splitting%20Approach%20to%20Nonsmooth%20Convex%20Variational%20Signal%20Recovery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Combettes,%20P.L.&rft.date=2007-12-01&rft.volume=1&rft.issue=4&rft.spage=564&rft.epage=574&rft.pages=564-574&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2007.910264&rft_dat=%3Cproquest_RIE%3E34496809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864080457&rft_id=info:pmid/&rft_ieee_id=4407760&rfr_iscdi=true |