A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery

Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2007-12, Vol.1 (4), p.564-574
Hauptverfasser: Combettes, P.L., Pesquet, J.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 4
container_start_page 564
container_title IEEE journal of selected topics in signal processing
container_volume 1
creator Combettes, P.L.
Pesquet, J.-C.
description Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.
doi_str_mv 10.1109/JSTSP.2007.910264
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34496809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407760</ieee_id><sourcerecordid>34496809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhCMEEqXwAIhLxAGJQ8o6duL4WJWfgipATcvVclynNUrjYqcVfXscgnrgtKvRtzu7miC4RDBACNjdSz7L3wcxAB0wBHFKjoIeYgRFQDJy3PY4jkiS4NPgzLlPgISmiPSC-TC8N9tlJVw0FXJVGrsI802lm0bXy3C42Vjj5bAx4aup3dqYZhWOTL1T3-GHsFo02tSiCnO9bMtUSbNTdn8enJSicurir_aD-ePDbDSOJm9Pz6PhJJIkxk2UqVhCBiorCgpQYIGJXBQJK0uKWJqljDKWpRIVsZRESiylXCCMMS3KYsFUgvvBbbd3JSq-sXot7J4bofl4OOGtBpDGKIthhzx707H-pa-tcg1faydVVYlama3jmBDvCcyD1__AT7O1_j3Hs5T4e0lCPYQ6SFrjnFXlwR4BbxPhv4nwNhHeJeJnrroZrZQ68IQApSngH8DghvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864080457</pqid></control><display><type>article</type><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><source>IEEE Electronic Library (IEL)</source><creator>Combettes, P.L. ; Pesquet, J.-C.</creator><creatorcontrib>Combettes, P.L. ; Pesquet, J.-C.</creatorcontrib><description>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2007.910264</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation and Language ; Computer Science ; Convergence ; Convex optimization ; denoising ; Douglas-Rachford ; frame ; Hilbert space ; Image denoising ; Mathematical model ; Noise reduction ; nondifferentiable optimization ; Poisson noise ; Projection algorithms ; proximal algorithm ; Signal analysis ; Signal processing ; Signal processing algorithms ; wavelets</subject><ispartof>IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.564-574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</citedby><cites>FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</cites><orcidid>0000-0002-5943-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4407760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00621820$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Pesquet, J.-C.</creatorcontrib><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</description><subject>Computation and Language</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Convex optimization</subject><subject>denoising</subject><subject>Douglas-Rachford</subject><subject>frame</subject><subject>Hilbert space</subject><subject>Image denoising</subject><subject>Mathematical model</subject><subject>Noise reduction</subject><subject>nondifferentiable optimization</subject><subject>Poisson noise</subject><subject>Projection algorithms</subject><subject>proximal algorithm</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>wavelets</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1OwzAQhCMEEqXwAIhLxAGJQ8o6duL4WJWfgipATcvVclynNUrjYqcVfXscgnrgtKvRtzu7miC4RDBACNjdSz7L3wcxAB0wBHFKjoIeYgRFQDJy3PY4jkiS4NPgzLlPgISmiPSC-TC8N9tlJVw0FXJVGrsI802lm0bXy3C42Vjj5bAx4aup3dqYZhWOTL1T3-GHsFo02tSiCnO9bMtUSbNTdn8enJSicurir_aD-ePDbDSOJm9Pz6PhJJIkxk2UqVhCBiorCgpQYIGJXBQJK0uKWJqljDKWpRIVsZRESiylXCCMMS3KYsFUgvvBbbd3JSq-sXot7J4bofl4OOGtBpDGKIthhzx707H-pa-tcg1faydVVYlama3jmBDvCcyD1__AT7O1_j3Hs5T4e0lCPYQ6SFrjnFXlwR4BbxPhv4nwNhHeJeJnrroZrZQ68IQApSngH8DghvE</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Combettes, P.L.</creator><creator>Pesquet, J.-C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></search><sort><creationdate>20071201</creationdate><title>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</title><author>Combettes, P.L. ; Pesquet, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-8e2c080e8bb700b3a34cdb59ff719686979986c1b2cc4cc3cccd13337bfbd9e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computation and Language</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Convex optimization</topic><topic>denoising</topic><topic>Douglas-Rachford</topic><topic>frame</topic><topic>Hilbert space</topic><topic>Image denoising</topic><topic>Mathematical model</topic><topic>Noise reduction</topic><topic>nondifferentiable optimization</topic><topic>Poisson noise</topic><topic>Projection algorithms</topic><topic>proximal algorithm</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Pesquet, J.-C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Combettes, P.L.</au><au>Pesquet, J.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>564</spage><epage>574</epage><pages>564-574</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monotone operator-splitting, is obtained under general conditions. Applications to non-Gaussian image denoising in a tight frame are also demonstrated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2007.910264</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2007-12, Vol.1 (4), p.564-574
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_miscellaneous_34496809
source IEEE Electronic Library (IEL)
subjects Computation and Language
Computer Science
Convergence
Convex optimization
denoising
Douglas-Rachford
frame
Hilbert space
Image denoising
Mathematical model
Noise reduction
nondifferentiable optimization
Poisson noise
Projection algorithms
proximal algorithm
Signal analysis
Signal processing
Signal processing algorithms
wavelets
title A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Douglas-Rachford%20Splitting%20Approach%20to%20Nonsmooth%20Convex%20Variational%20Signal%20Recovery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Combettes,%20P.L.&rft.date=2007-12-01&rft.volume=1&rft.issue=4&rft.spage=564&rft.epage=574&rft.pages=564-574&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2007.910264&rft_dat=%3Cproquest_RIE%3E34496809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864080457&rft_id=info:pmid/&rft_ieee_id=4407760&rfr_iscdi=true