Gradient Projection Decoding of LDPC Codes

A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2007-03, Vol.11 (3), p.279-281, Article 279
Hauptverfasser: Kasparis, C., Evans, B.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 3
container_start_page 279
container_title IEEE communications letters
container_volume 11
creator Kasparis, C.
Evans, B.G.
description A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed
doi_str_mv 10.1109/LCOMM.2007.061780
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34495462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4133922</ieee_id><sourcerecordid>880661187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFZ_gLgZBBWEqS9fk2QpU7-gpV3oOmSSjKSME02mC_-9U1sUXLjJy-Lc-3gny04RTBACeTOrFvP5BAPwCZSIC9jLRogxUeDh2R_-IGTBuRSH2VFKKwAQmKFRdv0QtfWu6_NlDCtneh-6fOpMsL57zUOTz6bLKq-Cdek4O2h0m9zJbo6zl_u75-qxmC0enqrbWWEoFn3RCGtqwXBtMDTAqHM1aSzCNeaYU8Y4NqABM1JbQzRqmOTOgjSWIYKwpWScXW1732P4WLvUqzefjGtb3bmwTkoIKEuEBB_Iy39JQqlktMQDeP4HXIV17IYrlCgplJJLMkBoC5kYUoquUe_Rv-n4qRCojWT1LVltJKut5CFzsSvWyei2ibozPv0GBZOSgBg4_qfb-F5vZPdR-_bfDWfbpHfO_RRTRIjEmHwBlfyT3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864069793</pqid></control><display><type>article</type><title>Gradient Projection Decoding of LDPC Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kasparis, C. ; Evans, B.G.</creator><creatorcontrib>Kasparis, C. ; Evans, B.G.</creatorcontrib><description>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2007.061780</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Belief propagation ; Coding, codes ; Computational complexity ; Computational modeling ; Constraining ; Convergence ; Decoding ; Degradation ; Delay ; Exact sciences and technology ; Information, signal and communications theory ; Iterative decoding ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Parity ; Parity check codes ; Projection ; Projection algorithms ; Signal and communications theory ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE communications letters, 2007-03, Vol.11 (3), p.279-281, Article 279</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</citedby><cites>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4133922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4133922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18599308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasparis, C.</creatorcontrib><creatorcontrib>Evans, B.G.</creatorcontrib><title>Gradient Projection Decoding of LDPC Codes</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Belief propagation</subject><subject>Coding, codes</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Degradation</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Parity</subject><subject>Parity check codes</subject><subject>Projection</subject><subject>Projection algorithms</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEURQdRsFZ_gLgZBBWEqS9fk2QpU7-gpV3oOmSSjKSME02mC_-9U1sUXLjJy-Lc-3gny04RTBACeTOrFvP5BAPwCZSIC9jLRogxUeDh2R_-IGTBuRSH2VFKKwAQmKFRdv0QtfWu6_NlDCtneh-6fOpMsL57zUOTz6bLKq-Cdek4O2h0m9zJbo6zl_u75-qxmC0enqrbWWEoFn3RCGtqwXBtMDTAqHM1aSzCNeaYU8Y4NqABM1JbQzRqmOTOgjSWIYKwpWScXW1732P4WLvUqzefjGtb3bmwTkoIKEuEBB_Iy39JQqlktMQDeP4HXIV17IYrlCgplJJLMkBoC5kYUoquUe_Rv-n4qRCojWT1LVltJKut5CFzsSvWyei2ibozPv0GBZOSgBg4_qfb-F5vZPdR-_bfDWfbpHfO_RRTRIjEmHwBlfyT3A</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Kasparis, C.</creator><creator>Evans, B.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070301</creationdate><title>Gradient Projection Decoding of LDPC Codes</title><author>Kasparis, C. ; Evans, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Belief propagation</topic><topic>Coding, codes</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Degradation</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Parity</topic><topic>Parity check codes</topic><topic>Projection</topic><topic>Projection algorithms</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasparis, C.</creatorcontrib><creatorcontrib>Evans, B.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kasparis, C.</au><au>Evans, B.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient Projection Decoding of LDPC Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>11</volume><issue>3</issue><spage>279</spage><epage>281</epage><pages>279-281</pages><artnum>279</artnum><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2007.061780</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2007-03, Vol.11 (3), p.279-281, Article 279
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_miscellaneous_34495462
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Belief propagation
Coding, codes
Computational complexity
Computational modeling
Constraining
Convergence
Decoding
Degradation
Delay
Exact sciences and technology
Information, signal and communications theory
Iterative decoding
Mathematical analysis
Mathematical models
Nonlinear equations
Parity
Parity check codes
Projection
Projection algorithms
Signal and communications theory
Studies
Telecommunications and information theory
title Gradient Projection Decoding of LDPC Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20Projection%20Decoding%20of%20LDPC%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Kasparis,%20C.&rft.date=2007-03-01&rft.volume=11&rft.issue=3&rft.spage=279&rft.epage=281&rft.pages=279-281&rft.artnum=279&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2007.061780&rft_dat=%3Cproquest_RIE%3E880661187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864069793&rft_id=info:pmid/&rft_ieee_id=4133922&rfr_iscdi=true