Gradient Projection Decoding of LDPC Codes
A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to th...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2007-03, Vol.11 (3), p.279-281, Article 279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 3 |
container_start_page | 279 |
container_title | IEEE communications letters |
container_volume | 11 |
creator | Kasparis, C. Evans, B.G. |
description | A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed |
doi_str_mv | 10.1109/LCOMM.2007.061780 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34495462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4133922</ieee_id><sourcerecordid>880661187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFZ_gLgZBBWEqS9fk2QpU7-gpV3oOmSSjKSME02mC_-9U1sUXLjJy-Lc-3gny04RTBACeTOrFvP5BAPwCZSIC9jLRogxUeDh2R_-IGTBuRSH2VFKKwAQmKFRdv0QtfWu6_NlDCtneh-6fOpMsL57zUOTz6bLKq-Cdek4O2h0m9zJbo6zl_u75-qxmC0enqrbWWEoFn3RCGtqwXBtMDTAqHM1aSzCNeaYU8Y4NqABM1JbQzRqmOTOgjSWIYKwpWScXW1732P4WLvUqzefjGtb3bmwTkoIKEuEBB_Iy39JQqlktMQDeP4HXIV17IYrlCgplJJLMkBoC5kYUoquUe_Rv-n4qRCojWT1LVltJKut5CFzsSvWyei2ibozPv0GBZOSgBg4_qfb-F5vZPdR-_bfDWfbpHfO_RRTRIjEmHwBlfyT3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864069793</pqid></control><display><type>article</type><title>Gradient Projection Decoding of LDPC Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kasparis, C. ; Evans, B.G.</creator><creatorcontrib>Kasparis, C. ; Evans, B.G.</creatorcontrib><description>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2007.061780</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Belief propagation ; Coding, codes ; Computational complexity ; Computational modeling ; Constraining ; Convergence ; Decoding ; Degradation ; Delay ; Exact sciences and technology ; Information, signal and communications theory ; Iterative decoding ; Mathematical analysis ; Mathematical models ; Nonlinear equations ; Parity ; Parity check codes ; Projection ; Projection algorithms ; Signal and communications theory ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE communications letters, 2007-03, Vol.11 (3), p.279-281, Article 279</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</citedby><cites>FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4133922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4133922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18599308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasparis, C.</creatorcontrib><creatorcontrib>Evans, B.G.</creatorcontrib><title>Gradient Projection Decoding of LDPC Codes</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Belief propagation</subject><subject>Coding, codes</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Degradation</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Parity</subject><subject>Parity check codes</subject><subject>Projection</subject><subject>Projection algorithms</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEURQdRsFZ_gLgZBBWEqS9fk2QpU7-gpV3oOmSSjKSME02mC_-9U1sUXLjJy-Lc-3gny04RTBACeTOrFvP5BAPwCZSIC9jLRogxUeDh2R_-IGTBuRSH2VFKKwAQmKFRdv0QtfWu6_NlDCtneh-6fOpMsL57zUOTz6bLKq-Cdek4O2h0m9zJbo6zl_u75-qxmC0enqrbWWEoFn3RCGtqwXBtMDTAqHM1aSzCNeaYU8Y4NqABM1JbQzRqmOTOgjSWIYKwpWScXW1732P4WLvUqzefjGtb3bmwTkoIKEuEBB_Iy39JQqlktMQDeP4HXIV17IYrlCgplJJLMkBoC5kYUoquUe_Rv-n4qRCojWT1LVltJKut5CFzsSvWyei2ibozPv0GBZOSgBg4_qfb-F5vZPdR-_bfDWfbpHfO_RRTRIjEmHwBlfyT3A</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Kasparis, C.</creator><creator>Evans, B.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070301</creationdate><title>Gradient Projection Decoding of LDPC Codes</title><author>Kasparis, C. ; Evans, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f8dcb852bc20f054eeb3fd12b272745572c0a0253bdc3a1f597ed09cd51312d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Belief propagation</topic><topic>Coding, codes</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Degradation</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Parity</topic><topic>Parity check codes</topic><topic>Projection</topic><topic>Projection algorithms</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasparis, C.</creatorcontrib><creatorcontrib>Evans, B.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kasparis, C.</au><au>Evans, B.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient Projection Decoding of LDPC Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>11</volume><issue>3</issue><spage>279</spage><epage>281</epage><pages>279-281</pages><artnum>279</artnum><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>A new practical method for decoding low-density parity check (LDPC) codes is presented. The followed approach involves reformulating the parity check equations using nonlinear functions of a specific form, defined over R rho , where rho denotes the check node degree. By constraining the inputs to these functions in the closed convex subset [0,1] rho ("box" set) of R rho , and also by exploiting their form, a multimodal objective function that entails the code constraints is formulated. The gradient projection algorithm is then used for searching for a valid codeword that lies in the vicinity of the channel observation. The computational complexity of the new decoding technique is practically sub-linearly dependent on the code's length, while processing on each variable node can be performed in parallel allowing very low decoding latencies. Simulation results show that convergence is achieved within 10 iterations, although some performance degradations relative to the belief propagation (BP) algorithm are observed</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2007.061780</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2007-03, Vol.11 (3), p.279-281, Article 279 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_miscellaneous_34495462 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Belief propagation Coding, codes Computational complexity Computational modeling Constraining Convergence Decoding Degradation Delay Exact sciences and technology Information, signal and communications theory Iterative decoding Mathematical analysis Mathematical models Nonlinear equations Parity Parity check codes Projection Projection algorithms Signal and communications theory Studies Telecommunications and information theory |
title | Gradient Projection Decoding of LDPC Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20Projection%20Decoding%20of%20LDPC%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Kasparis,%20C.&rft.date=2007-03-01&rft.volume=11&rft.issue=3&rft.spage=279&rft.epage=281&rft.pages=279-281&rft.artnum=279&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2007.061780&rft_dat=%3Cproquest_RIE%3E880661187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864069793&rft_id=info:pmid/&rft_ieee_id=4133922&rfr_iscdi=true |