Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling

Reactions of H 2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2008-12, Vol.55 (6), p.3039-3045
Hauptverfasser: Batyrev, I.G., Hughart, D., Durand, R., Bounasser, M., Tuttle, B.R., Fleetwood, D.M., Schrimpf, R.D., Rashkeev, S.N., Dunham, G.W., Law, M., Pantelides, S.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3045
container_issue 6
container_start_page 3039
container_title IEEE transactions on nuclear science
container_volume 55
creator Batyrev, I.G.
Hughart, D.
Durand, R.
Bounasser, M.
Tuttle, B.R.
Fleetwood, D.M.
Schrimpf, R.D.
Rashkeev, S.N.
Dunham, G.W.
Law, M.
Pantelides, S.T.
description Reactions of H 2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydrogen molecules and proton generation are proposed. We also suggest a mechanism of formation of border traps. When protons are trapped by oxygen vacancies right at or very near the interface, they form electrically active defects near the middle of the band gap. Activation energies of the reaction are used to construct rate equations. The rate equations are solved numerically to determine the spatial and temporal concentrations of hydrogen, holes, and protons. The calculated concentrations of interface and border traps agree well with the experimental results and help to explain the role of hydrogen in determining the total-dose response of BJTs.
doi_str_mv 10.1109/TNS.2008.2009353
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34494607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4723752</ieee_id><sourcerecordid>2545018631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f28e8e5f2afc986fb8227dd1a989b749fd75606ad4dc26a0e1038e5c9c8dc7363</originalsourceid><addsrcrecordid>eNp90c9rFTEQB_AgCj6rd8FL9KCnrUk2P71peW2FqlCfRwlpMmlTtsma7AP735vlFQ8ePCRh4DOBmS9CLyk5ppSY97uv348ZIXq9zCjGR2hDhdADFUo_RhtCqB4MN-YpetbabS-5IGKDfm5jBL80XCI-vw-1XEPGJePlBvClC8ktqVeX0OaSG6zqU5rL5CreVZdbakup7QPe_p6hpjvIC3Y54C8lwJTy9XP0JLqpwYuH9wj9ON3uTs6Hi29nn08-Xgx-VGYZItOgQUTmojdaxivNmAqBOqPNleImBiUkkS7w4Jl0BCgZu_fG6-DVKMcj9Prwb2lLss2nBfyNLzn30awRhPDVvDuYuZZfe2iLvUvNwzS5DGXfrFaCyH50l2__K0fODZdEdfjmH3hb9jX3Sa2hjAkpDeuIHJCvpbUK0c59U67eW0rsGp3t0dk1OvsQXW95dWhJAPCXc8VGJdj4B9rBlDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912256692</pqid></control><display><type>article</type><title>Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Batyrev, I.G. ; Hughart, D. ; Durand, R. ; Bounasser, M. ; Tuttle, B.R. ; Fleetwood, D.M. ; Schrimpf, R.D. ; Rashkeev, S.N. ; Dunham, G.W. ; Law, M. ; Pantelides, S.T.</creator><creatorcontrib>Batyrev, I.G. ; Hughart, D. ; Durand, R. ; Bounasser, M. ; Tuttle, B.R. ; Fleetwood, D.M. ; Schrimpf, R.D. ; Rashkeev, S.N. ; Dunham, G.W. ; Law, M. ; Pantelides, S.T. ; Idaho National Laboratory (INL)</creatorcontrib><description>Reactions of H 2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydrogen molecules and proton generation are proposed. We also suggest a mechanism of formation of border traps. When protons are trapped by oxygen vacancies right at or very near the interface, they form electrically active defects near the middle of the band gap. Activation energies of the reaction are used to construct rate equations. The rate equations are solved numerically to determine the spatial and temporal concentrations of hydrogen, holes, and protons. The calculated concentrations of interface and border traps agree well with the experimental results and help to explain the role of hydrogen in determining the total-dose response of BJTs.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2008.2009353</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bipolar transistors ; Borders ; Computer simulation ; Cranes ; Current measurement ; DEFECTS ; Equations ; Fracture mechanics ; HYDROGEN ; Hydrogen soak ; Ionizing radiation ; IONIZING RADIATIONS ; MATERIALS SCIENCE ; Mathematical analysis ; Mathematical models ; OXYGEN ; oxygen vacancy ; PROTONS ; radiation ; RADIATIONS ; SIMULATION ; simulations ; Solid modeling ; Temporal logic ; Testing ; TRANSISTORS ; VACANCIES ; Voltage</subject><ispartof>IEEE transactions on nuclear science, 2008-12, Vol.55 (6), p.3039-3045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f28e8e5f2afc986fb8227dd1a989b749fd75606ad4dc26a0e1038e5c9c8dc7363</citedby><cites>FETCH-LOGICAL-c379t-f28e8e5f2afc986fb8227dd1a989b749fd75606ad4dc26a0e1038e5c9c8dc7363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4723752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4723752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/950046$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Batyrev, I.G.</creatorcontrib><creatorcontrib>Hughart, D.</creatorcontrib><creatorcontrib>Durand, R.</creatorcontrib><creatorcontrib>Bounasser, M.</creatorcontrib><creatorcontrib>Tuttle, B.R.</creatorcontrib><creatorcontrib>Fleetwood, D.M.</creatorcontrib><creatorcontrib>Schrimpf, R.D.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Dunham, G.W.</creatorcontrib><creatorcontrib>Law, M.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Reactions of H 2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydrogen molecules and proton generation are proposed. We also suggest a mechanism of formation of border traps. When protons are trapped by oxygen vacancies right at or very near the interface, they form electrically active defects near the middle of the band gap. Activation energies of the reaction are used to construct rate equations. The rate equations are solved numerically to determine the spatial and temporal concentrations of hydrogen, holes, and protons. The calculated concentrations of interface and border traps agree well with the experimental results and help to explain the role of hydrogen in determining the total-dose response of BJTs.</description><subject>Bipolar transistors</subject><subject>Borders</subject><subject>Computer simulation</subject><subject>Cranes</subject><subject>Current measurement</subject><subject>DEFECTS</subject><subject>Equations</subject><subject>Fracture mechanics</subject><subject>HYDROGEN</subject><subject>Hydrogen soak</subject><subject>Ionizing radiation</subject><subject>IONIZING RADIATIONS</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>OXYGEN</subject><subject>oxygen vacancy</subject><subject>PROTONS</subject><subject>radiation</subject><subject>RADIATIONS</subject><subject>SIMULATION</subject><subject>simulations</subject><subject>Solid modeling</subject><subject>Temporal logic</subject><subject>Testing</subject><subject>TRANSISTORS</subject><subject>VACANCIES</subject><subject>Voltage</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9rFTEQB_AgCj6rd8FL9KCnrUk2P71peW2FqlCfRwlpMmlTtsma7AP735vlFQ8ePCRh4DOBmS9CLyk5ppSY97uv348ZIXq9zCjGR2hDhdADFUo_RhtCqB4MN-YpetbabS-5IGKDfm5jBL80XCI-vw-1XEPGJePlBvClC8ktqVeX0OaSG6zqU5rL5CreVZdbakup7QPe_p6hpjvIC3Y54C8lwJTy9XP0JLqpwYuH9wj9ON3uTs6Hi29nn08-Xgx-VGYZItOgQUTmojdaxivNmAqBOqPNleImBiUkkS7w4Jl0BCgZu_fG6-DVKMcj9Prwb2lLss2nBfyNLzn30awRhPDVvDuYuZZfe2iLvUvNwzS5DGXfrFaCyH50l2__K0fODZdEdfjmH3hb9jX3Sa2hjAkpDeuIHJCvpbUK0c59U67eW0rsGp3t0dk1OvsQXW95dWhJAPCXc8VGJdj4B9rBlDo</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Batyrev, I.G.</creator><creator>Hughart, D.</creator><creator>Durand, R.</creator><creator>Bounasser, M.</creator><creator>Tuttle, B.R.</creator><creator>Fleetwood, D.M.</creator><creator>Schrimpf, R.D.</creator><creator>Rashkeev, S.N.</creator><creator>Dunham, G.W.</creator><creator>Law, M.</creator><creator>Pantelides, S.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20081201</creationdate><title>Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling</title><author>Batyrev, I.G. ; Hughart, D. ; Durand, R. ; Bounasser, M. ; Tuttle, B.R. ; Fleetwood, D.M. ; Schrimpf, R.D. ; Rashkeev, S.N. ; Dunham, G.W. ; Law, M. ; Pantelides, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f28e8e5f2afc986fb8227dd1a989b749fd75606ad4dc26a0e1038e5c9c8dc7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bipolar transistors</topic><topic>Borders</topic><topic>Computer simulation</topic><topic>Cranes</topic><topic>Current measurement</topic><topic>DEFECTS</topic><topic>Equations</topic><topic>Fracture mechanics</topic><topic>HYDROGEN</topic><topic>Hydrogen soak</topic><topic>Ionizing radiation</topic><topic>IONIZING RADIATIONS</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>OXYGEN</topic><topic>oxygen vacancy</topic><topic>PROTONS</topic><topic>radiation</topic><topic>RADIATIONS</topic><topic>SIMULATION</topic><topic>simulations</topic><topic>Solid modeling</topic><topic>Temporal logic</topic><topic>Testing</topic><topic>TRANSISTORS</topic><topic>VACANCIES</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batyrev, I.G.</creatorcontrib><creatorcontrib>Hughart, D.</creatorcontrib><creatorcontrib>Durand, R.</creatorcontrib><creatorcontrib>Bounasser, M.</creatorcontrib><creatorcontrib>Tuttle, B.R.</creatorcontrib><creatorcontrib>Fleetwood, D.M.</creatorcontrib><creatorcontrib>Schrimpf, R.D.</creatorcontrib><creatorcontrib>Rashkeev, S.N.</creatorcontrib><creatorcontrib>Dunham, G.W.</creatorcontrib><creatorcontrib>Law, M.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Batyrev, I.G.</au><au>Hughart, D.</au><au>Durand, R.</au><au>Bounasser, M.</au><au>Tuttle, B.R.</au><au>Fleetwood, D.M.</au><au>Schrimpf, R.D.</au><au>Rashkeev, S.N.</au><au>Dunham, G.W.</au><au>Law, M.</au><au>Pantelides, S.T.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>55</volume><issue>6</issue><spage>3039</spage><epage>3045</epage><pages>3039-3045</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Reactions of H 2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydrogen molecules and proton generation are proposed. We also suggest a mechanism of formation of border traps. When protons are trapped by oxygen vacancies right at or very near the interface, they form electrically active defects near the middle of the band gap. Activation energies of the reaction are used to construct rate equations. The rate equations are solved numerically to determine the spatial and temporal concentrations of hydrogen, holes, and protons. The calculated concentrations of interface and border traps agree well with the experimental results and help to explain the role of hydrogen in determining the total-dose response of BJTs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2008.2009353</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2008-12, Vol.55 (6), p.3039-3045
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_34494607
source IEEE Electronic Library (IEL)
subjects Bipolar transistors
Borders
Computer simulation
Cranes
Current measurement
DEFECTS
Equations
Fracture mechanics
HYDROGEN
Hydrogen soak
Ionizing radiation
IONIZING RADIATIONS
MATERIALS SCIENCE
Mathematical analysis
Mathematical models
OXYGEN
oxygen vacancy
PROTONS
radiation
RADIATIONS
SIMULATION
simulations
Solid modeling
Temporal logic
Testing
TRANSISTORS
VACANCIES
Voltage
title Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Hydrogen%20on%20the%20Radiation%20Response%20of%20Bipolar%20Transistors:%20Experiment%20and%20Modeling&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Batyrev,%20I.G.&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2008-12-01&rft.volume=55&rft.issue=6&rft.spage=3039&rft.epage=3045&rft.pages=3039-3045&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2008.2009353&rft_dat=%3Cproquest_RIE%3E2545018631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912256692&rft_id=info:pmid/&rft_ieee_id=4723752&rfr_iscdi=true