Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution

The role of phyllosilicate fabrics in fault gouge is a poorly understood component of the mechanical and hydrologic behavior of brittle fault zones. We present 90 fabric intensity measurements using X‐ray texture goniometry on 22 natural clay‐rich fault gouges from low‐angle detachment faults (Death...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2009-05, Vol.114 (B5), p.n/a
Hauptverfasser: Haines, Samuel H., van der Pluijm, Ben A., Ikari, Matt J., Saffer, Demian M., Marone, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B5
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 114
creator Haines, Samuel H.
van der Pluijm, Ben A.
Ikari, Matt J.
Saffer, Demian M.
Marone, Chris
description The role of phyllosilicate fabrics in fault gouge is a poorly understood component of the mechanical and hydrologic behavior of brittle fault zones. We present 90 fabric intensity measurements using X‐ray texture goniometry on 22 natural clay‐rich fault gouges from low‐angle detachment faults (Death Valley area detachments, California; Ruby Mountains, Nevada; West Salton Detachment Fault, California) and the Peramola thrust in NE Spain. Natural fault gouges have uniformly weak clay fabrics (multiples of a random distribution (MRD) = 1.7–4.5, average MRD = 2.6) when compared to phyllosilicate‐rich rocks found in other geologic settings. Clay fabric intensities in natural gouges do not vary significantly either as a function of tectonic environment or of dominant clay mineralogy in the gouge. We compare these natural samples with 69 phyllosilicate fabric intensities measured in laboratory experiments on synthetic clay‐quartz mixtures. Clay fabric intensities from laboratory samples are similar to those in natural gouges (MRD = 1.7–4.6), but increase systematically with increasing shear strain and normal stress. Total phyllosilicate content does not significantly affect clay fabric intensity. Shear strain is important for developing stronger fabrics; samples subjected solely to compression exhibit uniformly weak fabrics (MRD = 1.6–1.8) even when compressed at high normal stresses (150 MPa). The weak fabrics found in natural fault gouge indicate that if anisotropic and overall low fault zone permeability allow elevated pore fluid pressures and fault weakening, this anisotropy must be a transient feature that is not preserved. Our data also reinforce the idea that clay fabric development in sedimentary rocks is primarily a function of authigenic mineral growth and not of compaction‐induced particle rotation.
doi_str_mv 10.1029/2008JB005866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34481993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34481993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5054-b99bdc94a2e9af7d917f3bf6d646ff37bdb9cf1f61b79d07feaaac1f7fc3743</originalsourceid><addsrcrecordid>eNp9kMGOFCEQhonRxMm6Nx-Ai55sBZqGxps70dndbDRRE4-kmoYNynSPFK2OL-LryjiTzZ7kApV8_1dFEfKUs5ecCfNKMNZfXzDW9Uo9ICvBO9UIwcRDsmJc9g0TQj8m54hfWT2yU5LxFfmzTrCnAYYcHY1T8RPGsq8vOkFZMiQK00ghlxiii7UMsKRCb-fl1uNrerXdpeigxHlCGuZMq6eU5E_Y73nydJdn5xE9_lOhH-PWTwXyng6AtZG7N4H_MaflYHtCHgVI6M9P9xn59O7t5_Vlc_Nhc7V-c9NAxzrZDMYMozMShDcQ9Gi4Du0Q1KikCqHVwzgYF3hQfNBmZDp4AHA86OBaLdsz8vxorTN-XzwWu43ofEow-XlB20rZc2PaCr44gi7PiNkHu8txW_9gObOH9dv766_4s5MX0EEKGSYX8S4juGZGskP_9sj9jMnv_-u015uPF7zrxSHVHFMRi_91l4L8zSrd6s5-eb-x3VprcSmVle1ffu-mqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34481993</pqid></control><display><type>article</type><title>Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Haines, Samuel H. ; van der Pluijm, Ben A. ; Ikari, Matt J. ; Saffer, Demian M. ; Marone, Chris</creator><creatorcontrib>Haines, Samuel H. ; van der Pluijm, Ben A. ; Ikari, Matt J. ; Saffer, Demian M. ; Marone, Chris</creatorcontrib><description>The role of phyllosilicate fabrics in fault gouge is a poorly understood component of the mechanical and hydrologic behavior of brittle fault zones. We present 90 fabric intensity measurements using X‐ray texture goniometry on 22 natural clay‐rich fault gouges from low‐angle detachment faults (Death Valley area detachments, California; Ruby Mountains, Nevada; West Salton Detachment Fault, California) and the Peramola thrust in NE Spain. Natural fault gouges have uniformly weak clay fabrics (multiples of a random distribution (MRD) = 1.7–4.5, average MRD = 2.6) when compared to phyllosilicate‐rich rocks found in other geologic settings. Clay fabric intensities in natural gouges do not vary significantly either as a function of tectonic environment or of dominant clay mineralogy in the gouge. We compare these natural samples with 69 phyllosilicate fabric intensities measured in laboratory experiments on synthetic clay‐quartz mixtures. Clay fabric intensities from laboratory samples are similar to those in natural gouges (MRD = 1.7–4.6), but increase systematically with increasing shear strain and normal stress. Total phyllosilicate content does not significantly affect clay fabric intensity. Shear strain is important for developing stronger fabrics; samples subjected solely to compression exhibit uniformly weak fabrics (MRD = 1.6–1.8) even when compressed at high normal stresses (150 MPa). The weak fabrics found in natural fault gouge indicate that if anisotropic and overall low fault zone permeability allow elevated pore fluid pressures and fault weakening, this anisotropy must be a transient feature that is not preserved. Our data also reinforce the idea that clay fabric development in sedimentary rocks is primarily a function of authigenic mineral growth and not of compaction‐induced particle rotation.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2008JB005866</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>clay minerals ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fault gouge ; X-ray texture goniometry</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2009-05, Vol.114 (B5), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5054-b99bdc94a2e9af7d917f3bf6d646ff37bdb9cf1f61b79d07feaaac1f7fc3743</citedby><cites>FETCH-LOGICAL-a5054-b99bdc94a2e9af7d917f3bf6d646ff37bdb9cf1f61b79d07feaaac1f7fc3743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JB005866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JB005866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11518,27928,27929,45578,45579,46413,46472,46837,46896</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21709404$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haines, Samuel H.</creatorcontrib><creatorcontrib>van der Pluijm, Ben A.</creatorcontrib><creatorcontrib>Ikari, Matt J.</creatorcontrib><creatorcontrib>Saffer, Demian M.</creatorcontrib><creatorcontrib>Marone, Chris</creatorcontrib><title>Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>The role of phyllosilicate fabrics in fault gouge is a poorly understood component of the mechanical and hydrologic behavior of brittle fault zones. We present 90 fabric intensity measurements using X‐ray texture goniometry on 22 natural clay‐rich fault gouges from low‐angle detachment faults (Death Valley area detachments, California; Ruby Mountains, Nevada; West Salton Detachment Fault, California) and the Peramola thrust in NE Spain. Natural fault gouges have uniformly weak clay fabrics (multiples of a random distribution (MRD) = 1.7–4.5, average MRD = 2.6) when compared to phyllosilicate‐rich rocks found in other geologic settings. Clay fabric intensities in natural gouges do not vary significantly either as a function of tectonic environment or of dominant clay mineralogy in the gouge. We compare these natural samples with 69 phyllosilicate fabric intensities measured in laboratory experiments on synthetic clay‐quartz mixtures. Clay fabric intensities from laboratory samples are similar to those in natural gouges (MRD = 1.7–4.6), but increase systematically with increasing shear strain and normal stress. Total phyllosilicate content does not significantly affect clay fabric intensity. Shear strain is important for developing stronger fabrics; samples subjected solely to compression exhibit uniformly weak fabrics (MRD = 1.6–1.8) even when compressed at high normal stresses (150 MPa). The weak fabrics found in natural fault gouge indicate that if anisotropic and overall low fault zone permeability allow elevated pore fluid pressures and fault weakening, this anisotropy must be a transient feature that is not preserved. Our data also reinforce the idea that clay fabric development in sedimentary rocks is primarily a function of authigenic mineral growth and not of compaction‐induced particle rotation.</description><subject>clay minerals</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fault gouge</subject><subject>X-ray texture goniometry</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMGOFCEQhonRxMm6Nx-Ai55sBZqGxps70dndbDRRE4-kmoYNynSPFK2OL-LryjiTzZ7kApV8_1dFEfKUs5ecCfNKMNZfXzDW9Uo9ICvBO9UIwcRDsmJc9g0TQj8m54hfWT2yU5LxFfmzTrCnAYYcHY1T8RPGsq8vOkFZMiQK00ghlxiii7UMsKRCb-fl1uNrerXdpeigxHlCGuZMq6eU5E_Y73nydJdn5xE9_lOhH-PWTwXyng6AtZG7N4H_MaflYHtCHgVI6M9P9xn59O7t5_Vlc_Nhc7V-c9NAxzrZDMYMozMShDcQ9Gi4Du0Q1KikCqHVwzgYF3hQfNBmZDp4AHA86OBaLdsz8vxorTN-XzwWu43ofEow-XlB20rZc2PaCr44gi7PiNkHu8txW_9gObOH9dv766_4s5MX0EEKGSYX8S4juGZGskP_9sj9jMnv_-u015uPF7zrxSHVHFMRi_91l4L8zSrd6s5-eb-x3VprcSmVle1ffu-mqw</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Haines, Samuel H.</creator><creator>van der Pluijm, Ben A.</creator><creator>Ikari, Matt J.</creator><creator>Saffer, Demian M.</creator><creator>Marone, Chris</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200905</creationdate><title>Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution</title><author>Haines, Samuel H. ; van der Pluijm, Ben A. ; Ikari, Matt J. ; Saffer, Demian M. ; Marone, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5054-b99bdc94a2e9af7d917f3bf6d646ff37bdb9cf1f61b79d07feaaac1f7fc3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>clay minerals</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fault gouge</topic><topic>X-ray texture goniometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haines, Samuel H.</creatorcontrib><creatorcontrib>van der Pluijm, Ben A.</creatorcontrib><creatorcontrib>Ikari, Matt J.</creatorcontrib><creatorcontrib>Saffer, Demian M.</creatorcontrib><creatorcontrib>Marone, Chris</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haines, Samuel H.</au><au>van der Pluijm, Ben A.</au><au>Ikari, Matt J.</au><au>Saffer, Demian M.</au><au>Marone, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-05</date><risdate>2009</risdate><volume>114</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The role of phyllosilicate fabrics in fault gouge is a poorly understood component of the mechanical and hydrologic behavior of brittle fault zones. We present 90 fabric intensity measurements using X‐ray texture goniometry on 22 natural clay‐rich fault gouges from low‐angle detachment faults (Death Valley area detachments, California; Ruby Mountains, Nevada; West Salton Detachment Fault, California) and the Peramola thrust in NE Spain. Natural fault gouges have uniformly weak clay fabrics (multiples of a random distribution (MRD) = 1.7–4.5, average MRD = 2.6) when compared to phyllosilicate‐rich rocks found in other geologic settings. Clay fabric intensities in natural gouges do not vary significantly either as a function of tectonic environment or of dominant clay mineralogy in the gouge. We compare these natural samples with 69 phyllosilicate fabric intensities measured in laboratory experiments on synthetic clay‐quartz mixtures. Clay fabric intensities from laboratory samples are similar to those in natural gouges (MRD = 1.7–4.6), but increase systematically with increasing shear strain and normal stress. Total phyllosilicate content does not significantly affect clay fabric intensity. Shear strain is important for developing stronger fabrics; samples subjected solely to compression exhibit uniformly weak fabrics (MRD = 1.6–1.8) even when compressed at high normal stresses (150 MPa). The weak fabrics found in natural fault gouge indicate that if anisotropic and overall low fault zone permeability allow elevated pore fluid pressures and fault weakening, this anisotropy must be a transient feature that is not preserved. Our data also reinforce the idea that clay fabric development in sedimentary rocks is primarily a function of authigenic mineral growth and not of compaction‐induced particle rotation.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JB005866</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2009-05, Vol.114 (B5), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_34481993
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects clay minerals
Earth sciences
Earth, ocean, space
Exact sciences and technology
fault gouge
X-ray texture goniometry
title Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clay%20fabric%20intensity%20in%20natural%20and%20artificial%20fault%20gouges:%20Implications%20for%20brittle%20fault%20zone%20processes%20and%20sedimentary%20basin%20clay%20fabric%20evolution&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Haines,%20Samuel%20H.&rft.date=2009-05&rft.volume=114&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JB005866&rft_dat=%3Cproquest_cross%3E34481993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34481993&rft_id=info:pmid/&rfr_iscdi=true