Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes

Collaborative beamforming has been recently introduced in the context of wireless sensor networks (WSNs) to increase the transmission range of individual sensor nodes. The challenge in using collaborative beamforming in WSNs is the uncertainty regarding the sensor node locations. However, the actual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2009-02, Vol.8 (2), p.638-643
Hauptverfasser: Ahmed, M.F.A., Vorobyov, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 638
container_title IEEE transactions on wireless communications
container_volume 8
creator Ahmed, M.F.A.
Vorobyov, S.A.
description Collaborative beamforming has been recently introduced in the context of wireless sensor networks (WSNs) to increase the transmission range of individual sensor nodes. The challenge in using collaborative beamforming in WSNs is the uncertainty regarding the sensor node locations. However, the actual sensor node spatial distribution can be modeled by a properly selected probability density function (pdf). In this paper, we model the spatial distribution of sensor nodes in a cluster of WSN using Gaussian pdf. Gaussian pdf is more suitable in many WSN applications than, for example, uniform pdf which is commonly used for flat ad hoc networks. The average beampattern and its characteristics, the distribution of the beampattern level in the sidelobe region, and the distribution of the maximum sidelobe peak are derived using the theory of random arrays. We show that both the uniform and Gaussian sensor node deployments behave qualitatively in a similar way with respect to the beamwidths and sidelobe levels, while the Gaussian deployment gives wider mainlobe and has lower chance of large sidelobes.
doi_str_mv 10.1109/TWC.2009.071339
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34474621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4786421</ieee_id><sourcerecordid>875027258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-8b7b87a14be8bff29ec818a38bd5aba53ba25c6d2db9d930ed47a0f3a17291d03</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhgdRMEbPHrwMgnqaTVd_z1GWGIVALpGcQtM9XaMdZ6dj10yC_95eNuzBg6eq4n3qi7dp3gLbALD-7Ppmu-GM9RtmQIj-WXMCStmOc2mf73OhO-BGv2xeEd0xBkYrddLcbvM0-ZCLX9IDtgH9bsxll-YfbY3tYyo4IVFLOFOtZ1wec_lFVVh-thd-JUp-bmOipaSwLhiPZI5Ir5sXo58I3zzF0-b7l_Pr7dfu8uri2_bzZTcIC0tngwnWeJABbRhH3uNgwXphQ1Q-eCWC52rQkcfQx14wjNJ4NgoPhvcQmThtPh3m3pf8e0Va3C7RgPWzGfNKzhrFuOHKVvLjf0khpZGaQwXf_wPe5bXM9QtnNTANoPd7zw7QUDJRwdHdl7Tz5Y8D5vauuOqK27viDq7Ujg9PYz0NfhqLn4dExzYO0vRgeeXeHbiEiEdZGqtlPe4vIyGXFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861061160</pqid></control><display><type>article</type><title>Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, M.F.A. ; Vorobyov, S.A.</creator><creatorcontrib>Ahmed, M.F.A. ; Vorobyov, S.A.</creatorcontrib><description>Collaborative beamforming has been recently introduced in the context of wireless sensor networks (WSNs) to increase the transmission range of individual sensor nodes. The challenge in using collaborative beamforming in WSNs is the uncertainty regarding the sensor node locations. However, the actual sensor node spatial distribution can be modeled by a properly selected probability density function (pdf). In this paper, we model the spatial distribution of sensor nodes in a cluster of WSN using Gaussian pdf. Gaussian pdf is more suitable in many WSN applications than, for example, uniform pdf which is commonly used for flat ad hoc networks. The average beampattern and its characteristics, the distribution of the beampattern level in the sidelobe region, and the distribution of the maximum sidelobe peak are derived using the theory of random arrays. We show that both the uniform and Gaussian sensor node deployments behave qualitatively in a similar way with respect to the beamwidths and sidelobe levels, while the Gaussian deployment gives wider mainlobe and has lower chance of large sidelobes.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2009.071339</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ad hoc networks ; Antennas ; antennas and propagation ; Applied sciences ; Array signal processing ; Arrays ; Beamforming ; Collaboration ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian ; Information, signal and communications theory ; Networks ; Probability density function ; Probability density functions ; Radiocommunications ; Random variables ; resource allocation and interference management ; Resource management ; Sensor arrays ; sensor networks ; Sensor phenomena and characterization ; Sensors ; Services and terminals of telecommunications ; Sidelobes ; Signal and communications theory ; Signal, noise ; Spatial distribution ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control ; Transmission and modulation (techniques and equipments) ; Uncertainty ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2009-02, Vol.8 (2), p.638-643</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-8b7b87a14be8bff29ec818a38bd5aba53ba25c6d2db9d930ed47a0f3a17291d03</citedby><cites>FETCH-LOGICAL-c381t-8b7b87a14be8bff29ec818a38bd5aba53ba25c6d2db9d930ed47a0f3a17291d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4786421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4786421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21479182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, M.F.A.</creatorcontrib><creatorcontrib>Vorobyov, S.A.</creatorcontrib><title>Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Collaborative beamforming has been recently introduced in the context of wireless sensor networks (WSNs) to increase the transmission range of individual sensor nodes. The challenge in using collaborative beamforming in WSNs is the uncertainty regarding the sensor node locations. However, the actual sensor node spatial distribution can be modeled by a properly selected probability density function (pdf). In this paper, we model the spatial distribution of sensor nodes in a cluster of WSN using Gaussian pdf. Gaussian pdf is more suitable in many WSN applications than, for example, uniform pdf which is commonly used for flat ad hoc networks. The average beampattern and its characteristics, the distribution of the beampattern level in the sidelobe region, and the distribution of the maximum sidelobe peak are derived using the theory of random arrays. We show that both the uniform and Gaussian sensor node deployments behave qualitatively in a similar way with respect to the beamwidths and sidelobe levels, while the Gaussian deployment gives wider mainlobe and has lower chance of large sidelobes.</description><subject>Ad hoc networks</subject><subject>Antennas</subject><subject>antennas and propagation</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Collaboration</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Radiocommunications</subject><subject>Random variables</subject><subject>resource allocation and interference management</subject><subject>Resource management</subject><subject>Sensor arrays</subject><subject>sensor networks</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Services and terminals of telecommunications</subject><subject>Sidelobes</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Spatial distribution</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Uncertainty</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rFEEQhgdRMEbPHrwMgnqaTVd_z1GWGIVALpGcQtM9XaMdZ6dj10yC_95eNuzBg6eq4n3qi7dp3gLbALD-7Ppmu-GM9RtmQIj-WXMCStmOc2mf73OhO-BGv2xeEd0xBkYrddLcbvM0-ZCLX9IDtgH9bsxll-YfbY3tYyo4IVFLOFOtZ1wec_lFVVh-thd-JUp-bmOipaSwLhiPZI5Ir5sXo58I3zzF0-b7l_Pr7dfu8uri2_bzZTcIC0tngwnWeJABbRhH3uNgwXphQ1Q-eCWC52rQkcfQx14wjNJ4NgoPhvcQmThtPh3m3pf8e0Va3C7RgPWzGfNKzhrFuOHKVvLjf0khpZGaQwXf_wPe5bXM9QtnNTANoPd7zw7QUDJRwdHdl7Tz5Y8D5vauuOqK27viDq7Ujg9PYz0NfhqLn4dExzYO0vRgeeXeHbiEiEdZGqtlPe4vIyGXFA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ahmed, M.F.A.</creator><creator>Vorobyov, S.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes</title><author>Ahmed, M.F.A. ; Vorobyov, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-8b7b87a14be8bff29ec818a38bd5aba53ba25c6d2db9d930ed47a0f3a17291d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ad hoc networks</topic><topic>Antennas</topic><topic>antennas and propagation</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Collaboration</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Radiocommunications</topic><topic>Random variables</topic><topic>resource allocation and interference management</topic><topic>Resource management</topic><topic>Sensor arrays</topic><topic>sensor networks</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Services and terminals of telecommunications</topic><topic>Sidelobes</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Spatial distribution</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Uncertainty</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, M.F.A.</creatorcontrib><creatorcontrib>Vorobyov, S.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, M.F.A.</au><au>Vorobyov, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>8</volume><issue>2</issue><spage>638</spage><epage>643</epage><pages>638-643</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Collaborative beamforming has been recently introduced in the context of wireless sensor networks (WSNs) to increase the transmission range of individual sensor nodes. The challenge in using collaborative beamforming in WSNs is the uncertainty regarding the sensor node locations. However, the actual sensor node spatial distribution can be modeled by a properly selected probability density function (pdf). In this paper, we model the spatial distribution of sensor nodes in a cluster of WSN using Gaussian pdf. Gaussian pdf is more suitable in many WSN applications than, for example, uniform pdf which is commonly used for flat ad hoc networks. The average beampattern and its characteristics, the distribution of the beampattern level in the sidelobe region, and the distribution of the maximum sidelobe peak are derived using the theory of random arrays. We show that both the uniform and Gaussian sensor node deployments behave qualitatively in a similar way with respect to the beamwidths and sidelobe levels, while the Gaussian deployment gives wider mainlobe and has lower chance of large sidelobes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2009.071339</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2009-02, Vol.8 (2), p.638-643
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_miscellaneous_34474621
source IEEE Electronic Library (IEL)
subjects Ad hoc networks
Antennas
antennas and propagation
Applied sciences
Array signal processing
Arrays
Beamforming
Collaboration
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Gaussian
Information, signal and communications theory
Networks
Probability density function
Probability density functions
Radiocommunications
Random variables
resource allocation and interference management
Resource management
Sensor arrays
sensor networks
Sensor phenomena and characterization
Sensors
Services and terminals of telecommunications
Sidelobes
Signal and communications theory
Signal, noise
Spatial distribution
Studies
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Telemetry. Remote supervision. Telewarning. Remote control
Transmission and modulation (techniques and equipments)
Uncertainty
Wireless sensor networks
title Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20beamforming%20for%20wireless%20sensor%20networks%20with%20Gaussian%20distributed%20sensor%20nodes&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ahmed,%20M.F.A.&rft.date=2009-02-01&rft.volume=8&rft.issue=2&rft.spage=638&rft.epage=643&rft.pages=638-643&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2009.071339&rft_dat=%3Cproquest_RIE%3E875027258%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861061160&rft_id=info:pmid/&rft_ieee_id=4786421&rfr_iscdi=true