Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition

The paper presents a new synthesis method for nanocomposites made from amorphous and nanocrystalline silicon deposited on a carbon fiber substrate and the Li-ion battery anode performance results achieved with such nanocomposites. Atmospheric microwave plasma coating enables deposition of nanosized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-05, Vol.190 (1), p.157-161
Hauptverfasser: Wolf, H., Pajkic, Z., Gerdes, T., Willert-Porada, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 157
container_title Journal of power sources
container_volume 190
creator Wolf, H.
Pajkic, Z.
Gerdes, T.
Willert-Porada, M.
description The paper presents a new synthesis method for nanocomposites made from amorphous and nanocrystalline silicon deposited on a carbon fiber substrate and the Li-ion battery anode performance results achieved with such nanocomposites. Atmospheric microwave plasma coating enables deposition of nanosized silicon onto the 3D-carbon fiber substrate containing graphite as filler. The microstructure and composition of the nanocomposites is characterized by means of XRD, SEM, Raman spectroscopy and N 2 gas adsorption. Amorphous silicon and nanocrystalline silicon act together with the graphitic carbon as Li-intercalation material. Excellent adhesion to the “electrical network” provided by the carbon fibers is observed. In half-cell measurements versus lithium, a stable capacity is found even at multiple cycling with high charge/discharge current. Anodes for Li-ion batteries made from the new material have the potential to significantly increase the reversible capacity of the battery. For example, more than 700 mAh g −1 is obtained for a composite with a silicon content of less than 20 wt.%. The irreversible specific capacity is comparable to the one of an unmodified carbon fiber substrate.
doi_str_mv 10.1016/j.jpowsour.2008.07.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34470798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775308013815</els_id><sourcerecordid>34470798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b52c0b1a01268e4436b46af963a438b5db14524f36406862a92645f5fa3abb033</originalsourceid><addsrcrecordid>eNqFUEuO1DAQtRAj0czMFVA2sEso_907UIufNBIbZm2VHUfjVhIHO92j3nEHbshJcNMDW1YlVb1PvUfIKwodBare7rv9kh5LOuSOAZgOdAdcPiMbajRvmZbyOdkA16bVWvIX5GUpewCgVMOGrDvMLs2_fvwcogu5zhLH6NPczjgnn6YllbiG0gwpN2NcH-JhamOaG4frGvKpqai-nt2pmaLP6RGPoVlGLBM2_iHUHY7NEZfK7sMfrUq-IVcDjiXcPs1rcv_xw7fd5_bu66cvu_d3rRcG1tZJ5sFRBMqUCUJw5YTCYas4Cm6c7B0VkomBKwHKKIZbpoQc5IAcnQPOr8mbi-6S0_dDKKudYvFhHHEO6VAsF0KD3poKVBdgTVBKDoNdcpwwnywFey7Z7u3fku25ZAva1pIr8fWTA5aadMg4-1j-sRlV0jB-_uTdBRdq3GMM2RYfw-xDH3Pwq-1T_J_VbxsUmww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34470798</pqid></control><display><type>article</type><title>Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition</title><source>Elsevier ScienceDirect Journals</source><creator>Wolf, H. ; Pajkic, Z. ; Gerdes, T. ; Willert-Porada, M.</creator><creatorcontrib>Wolf, H. ; Pajkic, Z. ; Gerdes, T. ; Willert-Porada, M.</creatorcontrib><description>The paper presents a new synthesis method for nanocomposites made from amorphous and nanocrystalline silicon deposited on a carbon fiber substrate and the Li-ion battery anode performance results achieved with such nanocomposites. Atmospheric microwave plasma coating enables deposition of nanosized silicon onto the 3D-carbon fiber substrate containing graphite as filler. The microstructure and composition of the nanocomposites is characterized by means of XRD, SEM, Raman spectroscopy and N 2 gas adsorption. Amorphous silicon and nanocrystalline silicon act together with the graphitic carbon as Li-intercalation material. Excellent adhesion to the “electrical network” provided by the carbon fibers is observed. In half-cell measurements versus lithium, a stable capacity is found even at multiple cycling with high charge/discharge current. Anodes for Li-ion batteries made from the new material have the potential to significantly increase the reversible capacity of the battery. For example, more than 700 mAh g −1 is obtained for a composite with a silicon content of less than 20 wt.%. The irreversible specific capacity is comparable to the one of an unmodified carbon fiber substrate.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2008.07.035</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium-ion battery ; Microwave plasma ; Nanocomposite ; Silicon</subject><ispartof>Journal of power sources, 2009-05, Vol.190 (1), p.157-161</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b52c0b1a01268e4436b46af963a438b5db14524f36406862a92645f5fa3abb033</citedby><cites>FETCH-LOGICAL-c480t-b52c0b1a01268e4436b46af963a438b5db14524f36406862a92645f5fa3abb033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775308013815$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21658233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, H.</creatorcontrib><creatorcontrib>Pajkic, Z.</creatorcontrib><creatorcontrib>Gerdes, T.</creatorcontrib><creatorcontrib>Willert-Porada, M.</creatorcontrib><title>Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition</title><title>Journal of power sources</title><description>The paper presents a new synthesis method for nanocomposites made from amorphous and nanocrystalline silicon deposited on a carbon fiber substrate and the Li-ion battery anode performance results achieved with such nanocomposites. Atmospheric microwave plasma coating enables deposition of nanosized silicon onto the 3D-carbon fiber substrate containing graphite as filler. The microstructure and composition of the nanocomposites is characterized by means of XRD, SEM, Raman spectroscopy and N 2 gas adsorption. Amorphous silicon and nanocrystalline silicon act together with the graphitic carbon as Li-intercalation material. Excellent adhesion to the “electrical network” provided by the carbon fibers is observed. In half-cell measurements versus lithium, a stable capacity is found even at multiple cycling with high charge/discharge current. Anodes for Li-ion batteries made from the new material have the potential to significantly increase the reversible capacity of the battery. For example, more than 700 mAh g −1 is obtained for a composite with a silicon content of less than 20 wt.%. The irreversible specific capacity is comparable to the one of an unmodified carbon fiber substrate.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium-ion battery</subject><subject>Microwave plasma</subject><subject>Nanocomposite</subject><subject>Silicon</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUEuO1DAQtRAj0czMFVA2sEso_907UIufNBIbZm2VHUfjVhIHO92j3nEHbshJcNMDW1YlVb1PvUfIKwodBare7rv9kh5LOuSOAZgOdAdcPiMbajRvmZbyOdkA16bVWvIX5GUpewCgVMOGrDvMLs2_fvwcogu5zhLH6NPczjgnn6YllbiG0gwpN2NcH-JhamOaG4frGvKpqai-nt2pmaLP6RGPoVlGLBM2_iHUHY7NEZfK7sMfrUq-IVcDjiXcPs1rcv_xw7fd5_bu66cvu_d3rRcG1tZJ5sFRBMqUCUJw5YTCYas4Cm6c7B0VkomBKwHKKIZbpoQc5IAcnQPOr8mbi-6S0_dDKKudYvFhHHEO6VAsF0KD3poKVBdgTVBKDoNdcpwwnywFey7Z7u3fku25ZAva1pIr8fWTA5aadMg4-1j-sRlV0jB-_uTdBRdq3GMM2RYfw-xDH3Pwq-1T_J_VbxsUmww</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Wolf, H.</creator><creator>Pajkic, Z.</creator><creator>Gerdes, T.</creator><creator>Willert-Porada, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition</title><author>Wolf, H. ; Pajkic, Z. ; Gerdes, T. ; Willert-Porada, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b52c0b1a01268e4436b46af963a438b5db14524f36406862a92645f5fa3abb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium-ion battery</topic><topic>Microwave plasma</topic><topic>Nanocomposite</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, H.</creatorcontrib><creatorcontrib>Pajkic, Z.</creatorcontrib><creatorcontrib>Gerdes, T.</creatorcontrib><creatorcontrib>Willert-Porada, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, H.</au><au>Pajkic, Z.</au><au>Gerdes, T.</au><au>Willert-Porada, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition</atitle><jtitle>Journal of power sources</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>190</volume><issue>1</issue><spage>157</spage><epage>161</epage><pages>157-161</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The paper presents a new synthesis method for nanocomposites made from amorphous and nanocrystalline silicon deposited on a carbon fiber substrate and the Li-ion battery anode performance results achieved with such nanocomposites. Atmospheric microwave plasma coating enables deposition of nanosized silicon onto the 3D-carbon fiber substrate containing graphite as filler. The microstructure and composition of the nanocomposites is characterized by means of XRD, SEM, Raman spectroscopy and N 2 gas adsorption. Amorphous silicon and nanocrystalline silicon act together with the graphitic carbon as Li-intercalation material. Excellent adhesion to the “electrical network” provided by the carbon fibers is observed. In half-cell measurements versus lithium, a stable capacity is found even at multiple cycling with high charge/discharge current. Anodes for Li-ion batteries made from the new material have the potential to significantly increase the reversible capacity of the battery. For example, more than 700 mAh g −1 is obtained for a composite with a silicon content of less than 20 wt.%. The irreversible specific capacity is comparable to the one of an unmodified carbon fiber substrate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2008.07.035</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2009-05, Vol.190 (1), p.157-161
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_34470798
source Elsevier ScienceDirect Journals
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium-ion battery
Microwave plasma
Nanocomposite
Silicon
title Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%E2%80%93fiber%E2%80%93silicon-nanocomposites%20for%20lithium-ion%20battery%20anodes%20by%20microwave%20plasma%20chemical%20vapor%20deposition&rft.jtitle=Journal%20of%20power%20sources&rft.au=Wolf,%20H.&rft.date=2009-05-01&rft.volume=190&rft.issue=1&rft.spage=157&rft.epage=161&rft.pages=157-161&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2008.07.035&rft_dat=%3Cproquest_cross%3E34470798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34470798&rft_id=info:pmid/&rft_els_id=S0378775308013815&rfr_iscdi=true