Recent Progress in the Development of Neodymium-Doped Ceramic Yttria
Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y 2 O 3 ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These waveleng...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2007-05, Vol.13 (3), p.831-837 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 3 |
container_start_page | 831 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 13 |
creator | Prasad, N.S. Edwards, W.C. Trivedi, S.B. Kutcher, S.W. Chen-Chia Wang Joo-Soo Kim Hommerich, U. Shukla, V. Sadangi, R. Kear, B.H. |
description | Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y 2 O 3 ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These wavelengths, when frequency tripled, can generate ultraviolet (UV) light at ~305 and ~315 nm, which is particularly useful for ozone sensing using differential absorption light detection and ranging (LIDAR) technique. For practical realization of space-based UV transmitter technology, ceramic Nd:Y 2 O 3 material is considered to possess a great potential. A plasma melting and quenching method has been developed to produce Nd3 +- doped powders for consolidation into Nd: Y 2 O 3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises two main steps: 1) plasma melting and quenching to generate dense, and homogeneous doped metastable powders and 2) pressure-assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several in 1times1 ceramic cylinders have been produced. The infrared transmission of a 2-mm-thick undoped Y 2 O 3 ceramic was as high as ~75% without antireflection coating. In the case of Nd:Y 2 O 3 , ceramics infrared transmission values of ~50% were achieved for a similar sample thickness. Furthermore, Nd:Y 2 O 3 samples with dopant concentrations of up to ~2 at.% were prepared without significant emission quenching. |
doi_str_mv | 10.1109/JSTQE.2007.897179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34452545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244449</ieee_id><sourcerecordid>1671314964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-4e32b0351ebf29361b8a3056d92e4d165bdcf156202487daa3e2627868c3f2843</originalsourceid><addsrcrecordid>eNp9kUtLw0AQgIMoWKs_QLwED-oldWdf2T1KW18UnxX0tKTJRFOabNxNhP57UysePHQuMzDfzDB8QXAIZABA9Pnt8_RxPKCExAOlY4j1VtADIVTEBafbXU3iOKKSvO4Ge97PCSGKK9ILRk-YYtWED86-O_Q-LKqw-cBwhF-4sHW56tk8vEObLcuiLaORrTELh-iSskjDt6ZxRbIf7OTJwuPBb-4HL5fj6fA6mtxf3QwvJlHKGTQRR0ZnhAnAWU41kzBTCSNCZpoiz0CKWZbmICQllKs4SxKGVNJYSZWynCrO-sHpem_t7GeLvjFl4VNcLJIKbeuNJkwyrYB15MlGknEuqOCiA882giBjYMC1XF0__ofObeuq7mGjgYJUipMOgjWUOuu9w9zUrigTtzRAzMqU-TFlVqbM2lQ3c7SeKRDxj-eUd6HZN20gjMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912168840</pqid></control><display><type>article</type><title>Recent Progress in the Development of Neodymium-Doped Ceramic Yttria</title><source>IEEE Electronic Library (IEL)</source><creator>Prasad, N.S. ; Edwards, W.C. ; Trivedi, S.B. ; Kutcher, S.W. ; Chen-Chia Wang ; Joo-Soo Kim ; Hommerich, U. ; Shukla, V. ; Sadangi, R. ; Kear, B.H.</creator><creatorcontrib>Prasad, N.S. ; Edwards, W.C. ; Trivedi, S.B. ; Kutcher, S.W. ; Chen-Chia Wang ; Joo-Soo Kim ; Hommerich, U. ; Shukla, V. ; Sadangi, R. ; Kear, B.H.</creatorcontrib><description>Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y 2 O 3 ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These wavelengths, when frequency tripled, can generate ultraviolet (UV) light at ~305 and ~315 nm, which is particularly useful for ozone sensing using differential absorption light detection and ranging (LIDAR) technique. For practical realization of space-based UV transmitter technology, ceramic Nd:Y 2 O 3 material is considered to possess a great potential. A plasma melting and quenching method has been developed to produce Nd3 +- doped powders for consolidation into Nd: Y 2 O 3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises two main steps: 1) plasma melting and quenching to generate dense, and homogeneous doped metastable powders and 2) pressure-assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several in 1times1 ceramic cylinders have been produced. The infrared transmission of a 2-mm-thick undoped Y 2 O 3 ceramic was as high as ~75% without antireflection coating. In the case of Nd:Y 2 O 3 , ceramics infrared transmission values of ~50% were achieved for a similar sample thickness. Furthermore, Nd:Y 2 O 3 samples with dopant concentrations of up to ~2 at.% were prepared without significant emission quenching.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2007.897179</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmosphere ; Ceramics ; Ceramics industry ; Consolidation ; Electromagnetic wave absorption ; Frequency ; Infrared ; Laser radar ; Melting ; Nanostructure ; neodymium-doped yttria ; Optical materials ; Plasma materials processing ; Powders ; Quenching ; Rare earth metals ; Remote sensing ; Solid lasers ; solid-state lasers ; Wavelengths ; Yttrium oxide</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2007-05, Vol.13 (3), p.831-837</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-4e32b0351ebf29361b8a3056d92e4d165bdcf156202487daa3e2627868c3f2843</citedby><cites>FETCH-LOGICAL-c431t-4e32b0351ebf29361b8a3056d92e4d165bdcf156202487daa3e2627868c3f2843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4244449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prasad, N.S.</creatorcontrib><creatorcontrib>Edwards, W.C.</creatorcontrib><creatorcontrib>Trivedi, S.B.</creatorcontrib><creatorcontrib>Kutcher, S.W.</creatorcontrib><creatorcontrib>Chen-Chia Wang</creatorcontrib><creatorcontrib>Joo-Soo Kim</creatorcontrib><creatorcontrib>Hommerich, U.</creatorcontrib><creatorcontrib>Shukla, V.</creatorcontrib><creatorcontrib>Sadangi, R.</creatorcontrib><creatorcontrib>Kear, B.H.</creatorcontrib><title>Recent Progress in the Development of Neodymium-Doped Ceramic Yttria</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y 2 O 3 ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These wavelengths, when frequency tripled, can generate ultraviolet (UV) light at ~305 and ~315 nm, which is particularly useful for ozone sensing using differential absorption light detection and ranging (LIDAR) technique. For practical realization of space-based UV transmitter technology, ceramic Nd:Y 2 O 3 material is considered to possess a great potential. A plasma melting and quenching method has been developed to produce Nd3 +- doped powders for consolidation into Nd: Y 2 O 3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises two main steps: 1) plasma melting and quenching to generate dense, and homogeneous doped metastable powders and 2) pressure-assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several in 1times1 ceramic cylinders have been produced. The infrared transmission of a 2-mm-thick undoped Y 2 O 3 ceramic was as high as ~75% without antireflection coating. In the case of Nd:Y 2 O 3 , ceramics infrared transmission values of ~50% were achieved for a similar sample thickness. Furthermore, Nd:Y 2 O 3 samples with dopant concentrations of up to ~2 at.% were prepared without significant emission quenching.</description><subject>Atmosphere</subject><subject>Ceramics</subject><subject>Ceramics industry</subject><subject>Consolidation</subject><subject>Electromagnetic wave absorption</subject><subject>Frequency</subject><subject>Infrared</subject><subject>Laser radar</subject><subject>Melting</subject><subject>Nanostructure</subject><subject>neodymium-doped yttria</subject><subject>Optical materials</subject><subject>Plasma materials processing</subject><subject>Powders</subject><subject>Quenching</subject><subject>Rare earth metals</subject><subject>Remote sensing</subject><subject>Solid lasers</subject><subject>solid-state lasers</subject><subject>Wavelengths</subject><subject>Yttrium oxide</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLw0AQgIMoWKs_QLwED-oldWdf2T1KW18UnxX0tKTJRFOabNxNhP57UysePHQuMzDfzDB8QXAIZABA9Pnt8_RxPKCExAOlY4j1VtADIVTEBafbXU3iOKKSvO4Ge97PCSGKK9ILRk-YYtWED86-O_Q-LKqw-cBwhF-4sHW56tk8vEObLcuiLaORrTELh-iSskjDt6ZxRbIf7OTJwuPBb-4HL5fj6fA6mtxf3QwvJlHKGTQRR0ZnhAnAWU41kzBTCSNCZpoiz0CKWZbmICQllKs4SxKGVNJYSZWynCrO-sHpem_t7GeLvjFl4VNcLJIKbeuNJkwyrYB15MlGknEuqOCiA882giBjYMC1XF0__ofObeuq7mGjgYJUipMOgjWUOuu9w9zUrigTtzRAzMqU-TFlVqbM2lQ3c7SeKRDxj-eUd6HZN20gjMY</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Prasad, N.S.</creator><creator>Edwards, W.C.</creator><creator>Trivedi, S.B.</creator><creator>Kutcher, S.W.</creator><creator>Chen-Chia Wang</creator><creator>Joo-Soo Kim</creator><creator>Hommerich, U.</creator><creator>Shukla, V.</creator><creator>Sadangi, R.</creator><creator>Kear, B.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070501</creationdate><title>Recent Progress in the Development of Neodymium-Doped Ceramic Yttria</title><author>Prasad, N.S. ; Edwards, W.C. ; Trivedi, S.B. ; Kutcher, S.W. ; Chen-Chia Wang ; Joo-Soo Kim ; Hommerich, U. ; Shukla, V. ; Sadangi, R. ; Kear, B.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-4e32b0351ebf29361b8a3056d92e4d165bdcf156202487daa3e2627868c3f2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atmosphere</topic><topic>Ceramics</topic><topic>Ceramics industry</topic><topic>Consolidation</topic><topic>Electromagnetic wave absorption</topic><topic>Frequency</topic><topic>Infrared</topic><topic>Laser radar</topic><topic>Melting</topic><topic>Nanostructure</topic><topic>neodymium-doped yttria</topic><topic>Optical materials</topic><topic>Plasma materials processing</topic><topic>Powders</topic><topic>Quenching</topic><topic>Rare earth metals</topic><topic>Remote sensing</topic><topic>Solid lasers</topic><topic>solid-state lasers</topic><topic>Wavelengths</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, N.S.</creatorcontrib><creatorcontrib>Edwards, W.C.</creatorcontrib><creatorcontrib>Trivedi, S.B.</creatorcontrib><creatorcontrib>Kutcher, S.W.</creatorcontrib><creatorcontrib>Chen-Chia Wang</creatorcontrib><creatorcontrib>Joo-Soo Kim</creatorcontrib><creatorcontrib>Hommerich, U.</creatorcontrib><creatorcontrib>Shukla, V.</creatorcontrib><creatorcontrib>Sadangi, R.</creatorcontrib><creatorcontrib>Kear, B.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prasad, N.S.</au><au>Edwards, W.C.</au><au>Trivedi, S.B.</au><au>Kutcher, S.W.</au><au>Chen-Chia Wang</au><au>Joo-Soo Kim</au><au>Hommerich, U.</au><au>Shukla, V.</au><au>Sadangi, R.</au><au>Kear, B.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Progress in the Development of Neodymium-Doped Ceramic Yttria</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>13</volume><issue>3</issue><spage>831</spage><epage>837</epage><pages>831-837</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y 2 O 3 ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These wavelengths, when frequency tripled, can generate ultraviolet (UV) light at ~305 and ~315 nm, which is particularly useful for ozone sensing using differential absorption light detection and ranging (LIDAR) technique. For practical realization of space-based UV transmitter technology, ceramic Nd:Y 2 O 3 material is considered to possess a great potential. A plasma melting and quenching method has been developed to produce Nd3 +- doped powders for consolidation into Nd: Y 2 O 3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises two main steps: 1) plasma melting and quenching to generate dense, and homogeneous doped metastable powders and 2) pressure-assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several in 1times1 ceramic cylinders have been produced. The infrared transmission of a 2-mm-thick undoped Y 2 O 3 ceramic was as high as ~75% without antireflection coating. In the case of Nd:Y 2 O 3 , ceramics infrared transmission values of ~50% were achieved for a similar sample thickness. Furthermore, Nd:Y 2 O 3 samples with dopant concentrations of up to ~2 at.% were prepared without significant emission quenching.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2007.897179</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2007-05, Vol.13 (3), p.831-837 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_miscellaneous_34452545 |
source | IEEE Electronic Library (IEL) |
subjects | Atmosphere Ceramics Ceramics industry Consolidation Electromagnetic wave absorption Frequency Infrared Laser radar Melting Nanostructure neodymium-doped yttria Optical materials Plasma materials processing Powders Quenching Rare earth metals Remote sensing Solid lasers solid-state lasers Wavelengths Yttrium oxide |
title | Recent Progress in the Development of Neodymium-Doped Ceramic Yttria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Progress%20in%20the%20Development%20of%20Neodymium-Doped%20Ceramic%20Yttria&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Prasad,%20N.S.&rft.date=2007-05-01&rft.volume=13&rft.issue=3&rft.spage=831&rft.epage=837&rft.pages=831-837&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2007.897179&rft_dat=%3Cproquest_RIE%3E1671314964%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912168840&rft_id=info:pmid/&rft_ieee_id=4244449&rfr_iscdi=true |