Nonlinear System Identification With Composite Relevance Vector Machines

Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2007-04, Vol.14 (4), p.279-282
Hauptverfasser: Camps-Valls, G., Martinez-Ramon, M., Rojo-Alvarez, J.L., Munoz-Mari, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 4
container_start_page 279
container_title IEEE signal processing letters
container_volume 14
creator Camps-Valls, G.
Martinez-Ramon, M.
Rojo-Alvarez, J.L.
Munoz-Mari, J.
description Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection
doi_str_mv 10.1109/LSP.2006.885290
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34449006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4130389</ieee_id><sourcerecordid>903636115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-7e75a9ae7c6806373d1ba50a0618013b77b86a0620cad6626dcd40376a4606c53</originalsourceid><addsrcrecordid>eNp9kb1LA0EQxQ9RMEZrC5vDQm0uzt5-lxLUCPEDP8tlszchGy638fYi-N-7MWJhYTUz8HsP3rwsOyQwIAT0-fjpYVACiIFSvNSwlfUI56ooqSDbaQcJhdagdrO9GOcAoIjivWx0F5raN2jb_OkzdrjIbypsOj_1znY-NPmb72b5MCyWIfoO80es8cM2DvNXdF1o81vrZkkf97Odqa0jHvzMfvZydfk8HBXj--ub4cW4cKzkXSFRcqstSicUCCppRSaWgwVBFBA6kXKiRLpKcLYSohSVqxhQKSwTIByn_ex047tsw_sKY2cWPjqsa9tgWEWjgYoUmazJk39JyhjT6WEJPPsXJEISKqDUKqHHf9B5WLVNCmyUYEoz_u13voFcG2JscWqWrV_Y9tMQMOuuTOrKrLsym66S4mij8Ij4SzNCgSpNvwBg641n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864894506</pqid></control><display><type>article</type><title>Nonlinear System Identification With Composite Relevance Vector Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Camps-Valls, G. ; Martinez-Ramon, M. ; Rojo-Alvarez, J.L. ; Munoz-Mari, J.</creator><creatorcontrib>Camps-Valls, G. ; Martinez-Ramon, M. ; Rojo-Alvarez, J.L. ; Munoz-Mari, J.</creatorcontrib><description>Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2006.885290</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian methods ; Composite kernels ; Confidence intervals ; Desktop publishing ; Dynamical systems ; Function approximation ; Kernel ; Mathematical analysis ; Nonlinear dynamics ; nonlinear system identification ; Nonlinear systems ; Regression ; relevance vector machine (RVM) ; Signal processing algorithms ; Stacking ; Support vector machine classification ; Support vector machines ; System identification ; Tradeoffs ; Vectors (mathematics)</subject><ispartof>IEEE signal processing letters, 2007-04, Vol.14 (4), p.279-282</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-7e75a9ae7c6806373d1ba50a0618013b77b86a0620cad6626dcd40376a4606c53</citedby><cites>FETCH-LOGICAL-c425t-7e75a9ae7c6806373d1ba50a0618013b77b86a0620cad6626dcd40376a4606c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4130389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4130389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Martinez-Ramon, M.</creatorcontrib><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Munoz-Mari, J.</creatorcontrib><title>Nonlinear System Identification With Composite Relevance Vector Machines</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection</description><subject>Bayesian methods</subject><subject>Composite kernels</subject><subject>Confidence intervals</subject><subject>Desktop publishing</subject><subject>Dynamical systems</subject><subject>Function approximation</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>Nonlinear dynamics</subject><subject>nonlinear system identification</subject><subject>Nonlinear systems</subject><subject>Regression</subject><subject>relevance vector machine (RVM)</subject><subject>Signal processing algorithms</subject><subject>Stacking</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>System identification</subject><subject>Tradeoffs</subject><subject>Vectors (mathematics)</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1LA0EQxQ9RMEZrC5vDQm0uzt5-lxLUCPEDP8tlszchGy638fYi-N-7MWJhYTUz8HsP3rwsOyQwIAT0-fjpYVACiIFSvNSwlfUI56ooqSDbaQcJhdagdrO9GOcAoIjivWx0F5raN2jb_OkzdrjIbypsOj_1znY-NPmb72b5MCyWIfoO80es8cM2DvNXdF1o81vrZkkf97Odqa0jHvzMfvZydfk8HBXj--ub4cW4cKzkXSFRcqstSicUCCppRSaWgwVBFBA6kXKiRLpKcLYSohSVqxhQKSwTIByn_ex047tsw_sKY2cWPjqsa9tgWEWjgYoUmazJk39JyhjT6WEJPPsXJEISKqDUKqHHf9B5WLVNCmyUYEoz_u13voFcG2JscWqWrV_Y9tMQMOuuTOrKrLsym66S4mij8Ij4SzNCgSpNvwBg641n</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Camps-Valls, G.</creator><creator>Martinez-Ramon, M.</creator><creator>Rojo-Alvarez, J.L.</creator><creator>Munoz-Mari, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070401</creationdate><title>Nonlinear System Identification With Composite Relevance Vector Machines</title><author>Camps-Valls, G. ; Martinez-Ramon, M. ; Rojo-Alvarez, J.L. ; Munoz-Mari, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-7e75a9ae7c6806373d1ba50a0618013b77b86a0620cad6626dcd40376a4606c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Composite kernels</topic><topic>Confidence intervals</topic><topic>Desktop publishing</topic><topic>Dynamical systems</topic><topic>Function approximation</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>Nonlinear dynamics</topic><topic>nonlinear system identification</topic><topic>Nonlinear systems</topic><topic>Regression</topic><topic>relevance vector machine (RVM)</topic><topic>Signal processing algorithms</topic><topic>Stacking</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>System identification</topic><topic>Tradeoffs</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camps-Valls, G.</creatorcontrib><creatorcontrib>Martinez-Ramon, M.</creatorcontrib><creatorcontrib>Rojo-Alvarez, J.L.</creatorcontrib><creatorcontrib>Munoz-Mari, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Camps-Valls, G.</au><au>Martinez-Ramon, M.</au><au>Rojo-Alvarez, J.L.</au><au>Munoz-Mari, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear System Identification With Composite Relevance Vector Machines</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>14</volume><issue>4</issue><spage>279</spage><epage>282</epage><pages>279-282</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2006.885290</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2007-04, Vol.14 (4), p.279-282
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_miscellaneous_34449006
source IEEE Electronic Library (IEL)
subjects Bayesian methods
Composite kernels
Confidence intervals
Desktop publishing
Dynamical systems
Function approximation
Kernel
Mathematical analysis
Nonlinear dynamics
nonlinear system identification
Nonlinear systems
Regression
relevance vector machine (RVM)
Signal processing algorithms
Stacking
Support vector machine classification
Support vector machines
System identification
Tradeoffs
Vectors (mathematics)
title Nonlinear System Identification With Composite Relevance Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20System%20Identification%20With%20Composite%20Relevance%20Vector%20Machines&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Camps-Valls,%20G.&rft.date=2007-04-01&rft.volume=14&rft.issue=4&rft.spage=279&rft.epage=282&rft.pages=279-282&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2006.885290&rft_dat=%3Cproquest_RIE%3E903636115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864894506&rft_id=info:pmid/&rft_ieee_id=4130389&rfr_iscdi=true