Nonlinear System Identification With Composite Relevance Vector Machines

Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2007-04, Vol.14 (4), p.279-282
Hauptverfasser: Camps-Valls, G., Martinez-Ramon, M., Rojo-Alvarez, J.L., Munoz-Mari, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2006.885290