Experimental Comparison of Digital Implementations of Single-Phase PFC Controllers
This paper presents the design and the digital implementation of three controllers for a single-phase power factor corrector (PFC). Based on an averaged system model, an adaptive nonlinear control strategy is first designed, followed by a digital redesign of the standard cascaded linear controller a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2008-01, Vol.55 (1), p.67-78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the design and the digital implementation of three controllers for a single-phase power factor corrector (PFC). Based on an averaged system model, an adaptive nonlinear control strategy is first designed, followed by a digital redesign of the standard cascaded linear controller and a notch-filter-based variant. All three controllers have been verified via simulation in Simulink using a continuous time plant model and a discrete time controller. Real-time implementation is performed on an experimental testbed utilizing a rapid prototyping tool. The three controllers are experimentally compared for steady-state performance and transient response. It is shown that the nonlinear controller gives a better steady-state performance, whereas the linear strategy and the notch-filter-based variant have a faster dynamic response. Furthermore, although the notch-filter-based linear design shows promise in simulation, practical difficulties degrade its experimental performance. Performance metrics are tabulated for easy comparison. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2007.904016 |