Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces

We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2008-03, Vol.30 (3), p.541-547
Hauptverfasser: Makinen, E., Raisamo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 3
container_start_page 541
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 30
creator Makinen, E.
Raisamo, R.
description We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the maximum classification accuracy.
doi_str_mv 10.1109/TPAMI.2007.70800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34437500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4378387</ieee_id><sourcerecordid>903643726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-669030d6c7606dcd7ab87ebce1ebd7ccfa869021040590519d2eee36e8ab02793</originalsourceid><addsrcrecordid>eNqFkctP3DAQh62KCrbAvRISiiq1PWU7fsSP42oLFAlED_TQk-XYEzDKJhAnrfjv632ISj2Uky3PN5_G8yPkPYU5pWC-3H5fXF_OGYCaK9AAb8iMGm5KXnGzR2ZAJSu1ZvqAvEvpAYCKCvg-OaCamkoINSM_z365dnJj7Luib4oL7AIOxbJ1KcUm-m3hGsf7PqTidxzvi8U09qv87l3bPhdfcUQ_YihcF4pFG--6fD93HtMRedu4NuHx7jwkP87Pbpffyqubi8vl4qr0QpqxlNIAhyC9kiCDD8rVWmHtkWIdlPeN05lgFARUBipqAkNELlG7Gpgy_JB83nofh_5pwjTaVUwe29Z12E_JZr0UXDH5KqlVBULwDfnpv6QCBoZK_irIsy9bIYMf_gEf-mno8mKsloxXTIDKEGwhP_QpDdjYxyGu3PBsKdh14HYTuF0HbjeB55bTnXeqVxj-NuwSzsDHHeBSjqwZXOdjeuGyqsoDrr98suViXu9LOU-vuVb8DwnbukY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862352407</pqid></control><display><type>article</type><title>Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces</title><source>IEEE Electronic Library (IEL)</source><creator>Makinen, E. ; Raisamo, R.</creator><creatorcontrib>Makinen, E. ; Raisamo, R.</creatorcontrib><description>We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the maximum classification accuracy.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2007.70800</identifier><identifier>PMID: 18195447</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Alignment ; Application software ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Classification ; Classifier design and evaluation ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Computer vision ; Data processing. List processing. Character string processing ; Detectors ; Exact sciences and technology ; Eyes ; Face - anatomy &amp; histology ; Face - physiology ; Face and gesture recognition ; Face detection ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Information Storage and Retrieval - methods ; Intelligence ; Interactive systems ; Machine learning ; Memory organisation. Data processing ; Neural networks ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Reproducibility of Results ; Sensitivity and Specificity ; Sex Characteristics ; Sex Determination Analysis - methods ; Sex Factors ; Software ; Subtraction Technique ; Support vector machine classification ; Support vector machines ; Vision I/O</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2008-03, Vol.30 (3), p.541-547</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-669030d6c7606dcd7ab87ebce1ebd7ccfa869021040590519d2eee36e8ab02793</citedby><cites>FETCH-LOGICAL-c469t-669030d6c7606dcd7ab87ebce1ebd7ccfa869021040590519d2eee36e8ab02793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4378387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4378387$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20057506$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18195447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makinen, E.</creatorcontrib><creatorcontrib>Raisamo, R.</creatorcontrib><title>Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the maximum classification accuracy.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Classification</subject><subject>Classifier design and evaluation</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Computer vision</subject><subject>Data processing. List processing. Character string processing</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Eyes</subject><subject>Face - anatomy &amp; histology</subject><subject>Face - physiology</subject><subject>Face and gesture recognition</subject><subject>Face detection</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Interactive systems</subject><subject>Machine learning</subject><subject>Memory organisation. Data processing</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sex Characteristics</subject><subject>Sex Determination Analysis - methods</subject><subject>Sex Factors</subject><subject>Software</subject><subject>Subtraction Technique</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Vision I/O</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctP3DAQh62KCrbAvRISiiq1PWU7fsSP42oLFAlED_TQk-XYEzDKJhAnrfjv632ISj2Uky3PN5_G8yPkPYU5pWC-3H5fXF_OGYCaK9AAb8iMGm5KXnGzR2ZAJSu1ZvqAvEvpAYCKCvg-OaCamkoINSM_z365dnJj7Luib4oL7AIOxbJ1KcUm-m3hGsf7PqTidxzvi8U09qv87l3bPhdfcUQ_YihcF4pFG--6fD93HtMRedu4NuHx7jwkP87Pbpffyqubi8vl4qr0QpqxlNIAhyC9kiCDD8rVWmHtkWIdlPeN05lgFARUBipqAkNELlG7Gpgy_JB83nofh_5pwjTaVUwe29Z12E_JZr0UXDH5KqlVBULwDfnpv6QCBoZK_irIsy9bIYMf_gEf-mno8mKsloxXTIDKEGwhP_QpDdjYxyGu3PBsKdh14HYTuF0HbjeB55bTnXeqVxj-NuwSzsDHHeBSjqwZXOdjeuGyqsoDrr98suViXu9LOU-vuVb8DwnbukY</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Makinen, E.</creator><creator>Raisamo, R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces</title><author>Makinen, E. ; Raisamo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-669030d6c7606dcd7ab87ebce1ebd7ccfa869021040590519d2eee36e8ab02793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Classification</topic><topic>Classifier design and evaluation</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Computer vision</topic><topic>Data processing. List processing. Character string processing</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Eyes</topic><topic>Face - anatomy &amp; histology</topic><topic>Face - physiology</topic><topic>Face and gesture recognition</topic><topic>Face detection</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Interactive systems</topic><topic>Machine learning</topic><topic>Memory organisation. Data processing</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sex Characteristics</topic><topic>Sex Determination Analysis - methods</topic><topic>Sex Factors</topic><topic>Software</topic><topic>Subtraction Technique</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Vision I/O</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makinen, E.</creatorcontrib><creatorcontrib>Raisamo, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makinen, E.</au><au>Raisamo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>541</spage><epage>547</epage><pages>541-547</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the maximum classification accuracy.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>18195447</pmid><doi>10.1109/TPAMI.2007.70800</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2008-03, Vol.30 (3), p.541-547
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_34437500
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Application software
Applied sciences
Artificial Intelligence
Biometry - methods
Classification
Classifier design and evaluation
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Computer vision
Data processing. List processing. Character string processing
Detectors
Exact sciences and technology
Eyes
Face - anatomy & histology
Face - physiology
Face and gesture recognition
Face detection
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Intelligence
Interactive systems
Machine learning
Memory organisation. Data processing
Neural networks
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Reproducibility of Results
Sensitivity and Specificity
Sex Characteristics
Sex Determination Analysis - methods
Sex Factors
Software
Subtraction Technique
Support vector machine classification
Support vector machines
Vision I/O
title Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Gender%20Classification%20Methods%20with%20Automatically%20Detected%20and%20Aligned%20Faces&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Makinen,%20E.&rft.date=2008-03-01&rft.volume=30&rft.issue=3&rft.spage=541&rft.epage=547&rft.pages=541-547&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2007.70800&rft_dat=%3Cproquest_RIE%3E903643726%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862352407&rft_id=info:pmid/18195447&rft_ieee_id=4378387&rfr_iscdi=true