Flow simulation in an electrostatic precipitator of a thermal power plant

The performance of electrostatic precipitator (ESP) is significantly affected by its complex flow distribution arising as a result of its complex inside geometry. In the present study the gas flow through an ESP used at a local thermal power plant is modeled numerically using computational fluid dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2009-07, Vol.29 (10), p.2037-2042
Hauptverfasser: Haque, Shah M.E., Rasul, M.G., Deev, A.V., Khan, M.M.K., Subaschandar, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2042
container_issue 10
container_start_page 2037
container_title Applied thermal engineering
container_volume 29
creator Haque, Shah M.E.
Rasul, M.G.
Deev, A.V.
Khan, M.M.K.
Subaschandar, N.
description The performance of electrostatic precipitator (ESP) is significantly affected by its complex flow distribution arising as a result of its complex inside geometry. In the present study the gas flow through an ESP used at a local thermal power plant is modeled numerically using computational fluid dynamics (CFD) technique to gain an insight into the flow behavior inside the ESP. CFD code FLUENT is used to carry out the computations. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier–Stokes equations coupled with the k– ε turbulence model equations. The results of the simulation are discussed and compared with on-site measured data supplied by the power plant. The predicted results show a reasonable agreement with the measured data. The model developed is a novel tool for the thermal power plant to predict the effect of possible modifications made to the ESP design on the flow pattern.
doi_str_mv 10.1016/j.applthermaleng.2008.10.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34426656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108004201</els_id><sourcerecordid>34426656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f36d49428cd915b39756ea82a65e91090e18b8761586f6bd2910b7f4f06212463</originalsourceid><addsrcrecordid>eNqNkEFPwyAUx3vQxDn9DhzUWytQStvEi1mcLlniRc-E0oey0FKBufjtZdli4m0nwns_3v_xy7IbgguCCb_fFHKabPwEP0gL40dBMW5Sq8CkPctmpKzanJWEXGSXIWwwJrSp2SxbLa3boWCGrZXRuBGZEckRgQUVvQsxFRWaPCgzmXRxHjmNJDrmoMntwKPJyjFeZeda2gDXx3OevS-f3hYv-fr1ebV4XOeKURpzXfKetYw2qm9J1ZVtXXGQDZW8gpbgFgNpuqbmpGq45l1PU7GrNdOYU0IZL-fZ3WHu5N3XFkIUgwkKbNoB3DaIkjHKeXUKSDjDHCfw4QCq9OPgQYvJm0H6H0Gw2MsVG_FfrtjL3XeT3PT89pgjg5JWezkqE_5mUMLaquI0ccsDB8nOtwEvgjIwKuhN8htF78xpgb8m_JoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34164060</pqid></control><display><type>article</type><title>Flow simulation in an electrostatic precipitator of a thermal power plant</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Haque, Shah M.E. ; Rasul, M.G. ; Deev, A.V. ; Khan, M.M.K. ; Subaschandar, N.</creator><creatorcontrib>Haque, Shah M.E. ; Rasul, M.G. ; Deev, A.V. ; Khan, M.M.K. ; Subaschandar, N.</creatorcontrib><description>The performance of electrostatic precipitator (ESP) is significantly affected by its complex flow distribution arising as a result of its complex inside geometry. In the present study the gas flow through an ESP used at a local thermal power plant is modeled numerically using computational fluid dynamics (CFD) technique to gain an insight into the flow behavior inside the ESP. CFD code FLUENT is used to carry out the computations. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier–Stokes equations coupled with the k– ε turbulence model equations. The results of the simulation are discussed and compared with on-site measured data supplied by the power plant. The predicted results show a reasonable agreement with the measured data. The model developed is a novel tool for the thermal power plant to predict the effect of possible modifications made to the ESP design on the flow pattern.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.10.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Electrostatic precipitator ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow distribution ; Fluent ; Heat transfer ; Installations for energy generation and conversion: thermal and electrical energy ; Theoretical studies. Data and constants. Metering ; Thermal power plant ; Thermal power plants ; Turbulent flow</subject><ispartof>Applied thermal engineering, 2009-07, Vol.29 (10), p.2037-2042</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f36d49428cd915b39756ea82a65e91090e18b8761586f6bd2910b7f4f06212463</citedby><cites>FETCH-LOGICAL-c422t-f36d49428cd915b39756ea82a65e91090e18b8761586f6bd2910b7f4f06212463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2008.10.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21495562$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haque, Shah M.E.</creatorcontrib><creatorcontrib>Rasul, M.G.</creatorcontrib><creatorcontrib>Deev, A.V.</creatorcontrib><creatorcontrib>Khan, M.M.K.</creatorcontrib><creatorcontrib>Subaschandar, N.</creatorcontrib><title>Flow simulation in an electrostatic precipitator of a thermal power plant</title><title>Applied thermal engineering</title><description>The performance of electrostatic precipitator (ESP) is significantly affected by its complex flow distribution arising as a result of its complex inside geometry. In the present study the gas flow through an ESP used at a local thermal power plant is modeled numerically using computational fluid dynamics (CFD) technique to gain an insight into the flow behavior inside the ESP. CFD code FLUENT is used to carry out the computations. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier–Stokes equations coupled with the k– ε turbulence model equations. The results of the simulation are discussed and compared with on-site measured data supplied by the power plant. The predicted results show a reasonable agreement with the measured data. The model developed is a novel tool for the thermal power plant to predict the effect of possible modifications made to the ESP design on the flow pattern.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Electrostatic precipitator</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow distribution</subject><subject>Fluent</subject><subject>Heat transfer</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal power plant</subject><subject>Thermal power plants</subject><subject>Turbulent flow</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwyAUx3vQxDn9DhzUWytQStvEi1mcLlniRc-E0oey0FKBufjtZdli4m0nwns_3v_xy7IbgguCCb_fFHKabPwEP0gL40dBMW5Sq8CkPctmpKzanJWEXGSXIWwwJrSp2SxbLa3boWCGrZXRuBGZEckRgQUVvQsxFRWaPCgzmXRxHjmNJDrmoMntwKPJyjFeZeda2gDXx3OevS-f3hYv-fr1ebV4XOeKURpzXfKetYw2qm9J1ZVtXXGQDZW8gpbgFgNpuqbmpGq45l1PU7GrNdOYU0IZL-fZ3WHu5N3XFkIUgwkKbNoB3DaIkjHKeXUKSDjDHCfw4QCq9OPgQYvJm0H6H0Gw2MsVG_FfrtjL3XeT3PT89pgjg5JWezkqE_5mUMLaquI0ccsDB8nOtwEvgjIwKuhN8htF78xpgb8m_JoJ</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Haque, Shah M.E.</creator><creator>Rasul, M.G.</creator><creator>Deev, A.V.</creator><creator>Khan, M.M.K.</creator><creator>Subaschandar, N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090701</creationdate><title>Flow simulation in an electrostatic precipitator of a thermal power plant</title><author>Haque, Shah M.E. ; Rasul, M.G. ; Deev, A.V. ; Khan, M.M.K. ; Subaschandar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f36d49428cd915b39756ea82a65e91090e18b8761586f6bd2910b7f4f06212463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Electrostatic precipitator</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow distribution</topic><topic>Fluent</topic><topic>Heat transfer</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal power plant</topic><topic>Thermal power plants</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haque, Shah M.E.</creatorcontrib><creatorcontrib>Rasul, M.G.</creatorcontrib><creatorcontrib>Deev, A.V.</creatorcontrib><creatorcontrib>Khan, M.M.K.</creatorcontrib><creatorcontrib>Subaschandar, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haque, Shah M.E.</au><au>Rasul, M.G.</au><au>Deev, A.V.</au><au>Khan, M.M.K.</au><au>Subaschandar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow simulation in an electrostatic precipitator of a thermal power plant</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>29</volume><issue>10</issue><spage>2037</spage><epage>2042</epage><pages>2037-2042</pages><issn>1359-4311</issn><abstract>The performance of electrostatic precipitator (ESP) is significantly affected by its complex flow distribution arising as a result of its complex inside geometry. In the present study the gas flow through an ESP used at a local thermal power plant is modeled numerically using computational fluid dynamics (CFD) technique to gain an insight into the flow behavior inside the ESP. CFD code FLUENT is used to carry out the computations. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier–Stokes equations coupled with the k– ε turbulence model equations. The results of the simulation are discussed and compared with on-site measured data supplied by the power plant. The predicted results show a reasonable agreement with the measured data. The model developed is a novel tool for the thermal power plant to predict the effect of possible modifications made to the ESP design on the flow pattern.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.10.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2009-07, Vol.29 (10), p.2037-2042
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_34426656
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
CFD
Electrostatic precipitator
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flow distribution
Fluent
Heat transfer
Installations for energy generation and conversion: thermal and electrical energy
Theoretical studies. Data and constants. Metering
Thermal power plant
Thermal power plants
Turbulent flow
title Flow simulation in an electrostatic precipitator of a thermal power plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20simulation%20in%20an%20electrostatic%20precipitator%20of%20a%20thermal%20power%20plant&rft.jtitle=Applied%20thermal%20engineering&rft.au=Haque,%20Shah%20M.E.&rft.date=2009-07-01&rft.volume=29&rft.issue=10&rft.spage=2037&rft.epage=2042&rft.pages=2037-2042&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.10.019&rft_dat=%3Cproquest_cross%3E34426656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34164060&rft_id=info:pmid/&rft_els_id=S1359431108004201&rfr_iscdi=true