Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes
Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2008-03, Vol.55 (3), p.916-924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 924 |
---|---|
container_issue | 3 |
container_start_page | 916 |
container_title | IEEE transactions on electron devices |
container_volume | 55 |
creator | Pengvanich, P. Chernin, D. Lau, Y.Y. Luginsland, J.W. Gilgenbach, R.M. |
description | Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and . |
doi_str_mv | 10.1109/TED.2007.914840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34412774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4455790</ieee_id><sourcerecordid>2323937211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</originalsourceid><addsrcrecordid>eNqFks1P3DAQxa2qSN0unDlwsSq1nLJ4Yscfx2q7QCUkECziGE28EzDKJtROkPrf16tFHHpoT56Rf_Pmyc-MHYNYAAh3tl79WJRCmIUDZZX4wGZQVaZwWumPbCYE2MJJKz-xzyk951YrVc5Ys2pb8iMfWn6L_WbY8mWIfgojP8cmBo9jGHq-inGIiefqbotdV9yFxx47foGh53mK3zxhIp6bdcRX6kL_WDzkgq-nhtIhO2ixS3T0ds7Z_flqvbwsrq4vfi6_XxVegRwLaqQSpSaXnWqwvpJaO0MeGzSqNcY2JQrjXOUANlYRVYgGWgteNxtrSc7Z6V73JQ6_JkpjvQ3JU9dhT8OUaidk1nVC_5e0phLZBlSZ_PZPUioFpTEqg1_-Ap-HKeZHymq6rCRAXj9nZ3vIxyGlSG39EsMW4-8aRL0Lsc4h1rsQ632IeeLrmywmj10bsfchvY-VYqcrdj5P9lwgovdrpfIPyHv_AKymokA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862531190</pqid></control><display><type>article</type><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><source>IEEE Electronic Library (IEL)</source><creator>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</creator><creatorcontrib>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</creatorcontrib><description>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.914840</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Circuit properties ; Circuits ; Dispersion ; Electric fields ; Electric, optical and optoelectronic circuits ; Electron tubes ; Electronic circuits ; Electronic tubes, masers ; Electronics ; Equations ; Exact sciences and technology ; Fabrication ; Gain ; Manufacturing ; Manufacturing tolerance ; Mathematical analysis ; Miniature ; Perturbation methods ; Phase velocity ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Standard deviation ; statistical variation ; Traveling wave tubes ; traveling-wave tube (TWT) ; Vacuum microelectronics</subject><ispartof>IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.916-924</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</citedby><cites>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4455790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4455790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20119005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pengvanich, P.</creatorcontrib><creatorcontrib>Chernin, D.</creatorcontrib><creatorcontrib>Lau, Y.Y.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits</subject><subject>Dispersion</subject><subject>Electric fields</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electron tubes</subject><subject>Electronic circuits</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Gain</subject><subject>Manufacturing</subject><subject>Manufacturing tolerance</subject><subject>Mathematical analysis</subject><subject>Miniature</subject><subject>Perturbation methods</subject><subject>Phase velocity</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Standard deviation</subject><subject>statistical variation</subject><subject>Traveling wave tubes</subject><subject>traveling-wave tube (TWT)</subject><subject>Vacuum microelectronics</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFks1P3DAQxa2qSN0unDlwsSq1nLJ4Yscfx2q7QCUkECziGE28EzDKJtROkPrf16tFHHpoT56Rf_Pmyc-MHYNYAAh3tl79WJRCmIUDZZX4wGZQVaZwWumPbCYE2MJJKz-xzyk951YrVc5Ys2pb8iMfWn6L_WbY8mWIfgojP8cmBo9jGHq-inGIiefqbotdV9yFxx47foGh53mK3zxhIp6bdcRX6kL_WDzkgq-nhtIhO2ixS3T0ds7Z_flqvbwsrq4vfi6_XxVegRwLaqQSpSaXnWqwvpJaO0MeGzSqNcY2JQrjXOUANlYRVYgGWgteNxtrSc7Z6V73JQ6_JkpjvQ3JU9dhT8OUaidk1nVC_5e0phLZBlSZ_PZPUioFpTEqg1_-Ap-HKeZHymq6rCRAXj9nZ3vIxyGlSG39EsMW4-8aRL0Lsc4h1rsQ632IeeLrmywmj10bsfchvY-VYqcrdj5P9lwgovdrpfIPyHv_AKymokA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Pengvanich, P.</creator><creator>Chernin, D.</creator><creator>Lau, Y.Y.</creator><creator>Luginsland, J.W.</creator><creator>Gilgenbach, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><author>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits</topic><topic>Dispersion</topic><topic>Electric fields</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electron tubes</topic><topic>Electronic circuits</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Gain</topic><topic>Manufacturing</topic><topic>Manufacturing tolerance</topic><topic>Mathematical analysis</topic><topic>Miniature</topic><topic>Perturbation methods</topic><topic>Phase velocity</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Standard deviation</topic><topic>statistical variation</topic><topic>Traveling wave tubes</topic><topic>traveling-wave tube (TWT)</topic><topic>Vacuum microelectronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pengvanich, P.</creatorcontrib><creatorcontrib>Chernin, D.</creatorcontrib><creatorcontrib>Lau, Y.Y.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pengvanich, P.</au><au>Chernin, D.</au><au>Lau, Y.Y.</au><au>Luginsland, J.W.</au><au>Gilgenbach, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>3</issue><spage>916</spage><epage>924</epage><pages>916-924</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.914840</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.916-924 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_34412774 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifiers Applied sciences Circuit properties Circuits Dispersion Electric fields Electric, optical and optoelectronic circuits Electron tubes Electronic circuits Electronic tubes, masers Electronics Equations Exact sciences and technology Fabrication Gain Manufacturing Manufacturing tolerance Mathematical analysis Miniature Perturbation methods Phase velocity Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Standard deviation statistical variation Traveling wave tubes traveling-wave tube (TWT) Vacuum microelectronics |
title | Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Random%20Circuit%20Fabrication%20Errors%20on%20Small-Signal%20Gain%20and%20Phase%20in%20Traveling-Wave%20Tubes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Pengvanich,%20P.&rft.date=2008-03-01&rft.volume=55&rft.issue=3&rft.spage=916&rft.epage=924&rft.pages=916-924&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.914840&rft_dat=%3Cproquest_RIE%3E2323937211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862531190&rft_id=info:pmid/&rft_ieee_id=4455790&rfr_iscdi=true |