Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes

Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2008-03, Vol.55 (3), p.916-924
Hauptverfasser: Pengvanich, P., Chernin, D., Lau, Y.Y., Luginsland, J.W., Gilgenbach, R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 3
container_start_page 916
container_title IEEE transactions on electron devices
container_volume 55
creator Pengvanich, P.
Chernin, D.
Lau, Y.Y.
Luginsland, J.W.
Gilgenbach, R.M.
description Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .
doi_str_mv 10.1109/TED.2007.914840
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34412774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4455790</ieee_id><sourcerecordid>2323937211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</originalsourceid><addsrcrecordid>eNqFks1P3DAQxa2qSN0unDlwsSq1nLJ4Yscfx2q7QCUkECziGE28EzDKJtROkPrf16tFHHpoT56Rf_Pmyc-MHYNYAAh3tl79WJRCmIUDZZX4wGZQVaZwWumPbCYE2MJJKz-xzyk951YrVc5Ys2pb8iMfWn6L_WbY8mWIfgojP8cmBo9jGHq-inGIiefqbotdV9yFxx47foGh53mK3zxhIp6bdcRX6kL_WDzkgq-nhtIhO2ixS3T0ds7Z_flqvbwsrq4vfi6_XxVegRwLaqQSpSaXnWqwvpJaO0MeGzSqNcY2JQrjXOUANlYRVYgGWgteNxtrSc7Z6V73JQ6_JkpjvQ3JU9dhT8OUaidk1nVC_5e0phLZBlSZ_PZPUioFpTEqg1_-Ap-HKeZHymq6rCRAXj9nZ3vIxyGlSG39EsMW4-8aRL0Lsc4h1rsQ632IeeLrmywmj10bsfchvY-VYqcrdj5P9lwgovdrpfIPyHv_AKymokA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862531190</pqid></control><display><type>article</type><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><source>IEEE Electronic Library (IEL)</source><creator>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</creator><creatorcontrib>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</creatorcontrib><description>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.914840</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Circuit properties ; Circuits ; Dispersion ; Electric fields ; Electric, optical and optoelectronic circuits ; Electron tubes ; Electronic circuits ; Electronic tubes, masers ; Electronics ; Equations ; Exact sciences and technology ; Fabrication ; Gain ; Manufacturing ; Manufacturing tolerance ; Mathematical analysis ; Miniature ; Perturbation methods ; Phase velocity ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Standard deviation ; statistical variation ; Traveling wave tubes ; traveling-wave tube (TWT) ; Vacuum microelectronics</subject><ispartof>IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.916-924</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</citedby><cites>FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4455790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4455790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20119005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pengvanich, P.</creatorcontrib><creatorcontrib>Chernin, D.</creatorcontrib><creatorcontrib>Lau, Y.Y.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits</subject><subject>Dispersion</subject><subject>Electric fields</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electron tubes</subject><subject>Electronic circuits</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Gain</subject><subject>Manufacturing</subject><subject>Manufacturing tolerance</subject><subject>Mathematical analysis</subject><subject>Miniature</subject><subject>Perturbation methods</subject><subject>Phase velocity</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Standard deviation</subject><subject>statistical variation</subject><subject>Traveling wave tubes</subject><subject>traveling-wave tube (TWT)</subject><subject>Vacuum microelectronics</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFks1P3DAQxa2qSN0unDlwsSq1nLJ4Yscfx2q7QCUkECziGE28EzDKJtROkPrf16tFHHpoT56Rf_Pmyc-MHYNYAAh3tl79WJRCmIUDZZX4wGZQVaZwWumPbCYE2MJJKz-xzyk951YrVc5Ys2pb8iMfWn6L_WbY8mWIfgojP8cmBo9jGHq-inGIiefqbotdV9yFxx47foGh53mK3zxhIp6bdcRX6kL_WDzkgq-nhtIhO2ixS3T0ds7Z_flqvbwsrq4vfi6_XxVegRwLaqQSpSaXnWqwvpJaO0MeGzSqNcY2JQrjXOUANlYRVYgGWgteNxtrSc7Z6V73JQ6_JkpjvQ3JU9dhT8OUaidk1nVC_5e0phLZBlSZ_PZPUioFpTEqg1_-Ap-HKeZHymq6rCRAXj9nZ3vIxyGlSG39EsMW4-8aRL0Lsc4h1rsQ632IeeLrmywmj10bsfchvY-VYqcrdj5P9lwgovdrpfIPyHv_AKymokA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Pengvanich, P.</creator><creator>Chernin, D.</creator><creator>Lau, Y.Y.</creator><creator>Luginsland, J.W.</creator><creator>Gilgenbach, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</title><author>Pengvanich, P. ; Chernin, D. ; Lau, Y.Y. ; Luginsland, J.W. ; Gilgenbach, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-eb34026e9018618c536697ecaba74f778b2a07995911d84ee5aa71f81c6bd88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits</topic><topic>Dispersion</topic><topic>Electric fields</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electron tubes</topic><topic>Electronic circuits</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Gain</topic><topic>Manufacturing</topic><topic>Manufacturing tolerance</topic><topic>Mathematical analysis</topic><topic>Miniature</topic><topic>Perturbation methods</topic><topic>Phase velocity</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Standard deviation</topic><topic>statistical variation</topic><topic>Traveling wave tubes</topic><topic>traveling-wave tube (TWT)</topic><topic>Vacuum microelectronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pengvanich, P.</creatorcontrib><creatorcontrib>Chernin, D.</creatorcontrib><creatorcontrib>Lau, Y.Y.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pengvanich, P.</au><au>Chernin, D.</au><au>Lau, Y.Y.</au><au>Luginsland, J.W.</au><au>Gilgenbach, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>3</issue><spage>916</spage><epage>924</epage><pages>916-924</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Motivated by current interest in submillimeter and terahertz (THz) slow-wave vacuum electronic amplifiers, which employ miniature, difficult-to-manufacture slow-wave circuits, we evaluate the effects of small random fabrication errors on the small-signal characteristics of a traveling wave tube. The classical 1-D small-signal theory of Pierce, generalized to allow axially varying circuit characteristics, is applied. Random, axially varying perturbations are introduced in the circuit phase velocity mismatch , the gain parameter , and the cold-tube circuit loss , in Pierce notation. Results from a first-order perturbation analysis of the small-signal equations, which are confirmed by numerical analysis, show that the standard deviations in the output phase and in the small-signal gain are linearly proportional to the standard deviations of the individual perturbations in , , and . Our study confirms that the effects of perturbations in the circuit phase velocity dominate the effects of perturbations in and .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.914840</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.916-924
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_34412774
source IEEE Electronic Library (IEL)
subjects Amplifiers
Applied sciences
Circuit properties
Circuits
Dispersion
Electric fields
Electric, optical and optoelectronic circuits
Electron tubes
Electronic circuits
Electronic tubes, masers
Electronics
Equations
Exact sciences and technology
Fabrication
Gain
Manufacturing
Manufacturing tolerance
Mathematical analysis
Miniature
Perturbation methods
Phase velocity
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Standard deviation
statistical variation
Traveling wave tubes
traveling-wave tube (TWT)
Vacuum microelectronics
title Effect of Random Circuit Fabrication Errors on Small-Signal Gain and Phase in Traveling-Wave Tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Random%20Circuit%20Fabrication%20Errors%20on%20Small-Signal%20Gain%20and%20Phase%20in%20Traveling-Wave%20Tubes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Pengvanich,%20P.&rft.date=2008-03-01&rft.volume=55&rft.issue=3&rft.spage=916&rft.epage=924&rft.pages=916-924&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.914840&rft_dat=%3Cproquest_RIE%3E2323937211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862531190&rft_id=info:pmid/&rft_ieee_id=4455790&rfr_iscdi=true