Cost-Effective Hidden Markov Model-Based Image Segmentation
Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2009-03, Vol.16 (3), p.172-175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 3 |
container_start_page | 172 |
container_title | IEEE signal processing letters |
container_volume | 16 |
creator | Lim, J. Kyungsuk Pyun |
description | Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs. |
doi_str_mv | 10.1109/LSP.2008.2008586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34410079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4776580</ieee_id><sourcerecordid>2316936341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</originalsourceid><addsrcrecordid>eNqF0bFOwzAQBuAIgUQp7EgsEQNMKWc7l9higqrQSq1AKsyWk1yqlDQucVqJt8eliIEBFp-H7-50-oPgnMGAMVA30_nzgAPIrwdlchD0GKKMuEjYof9DCpFSII-DE-eW4BGT2Atuh9Z10agsKe-qLYXjqiioCWemfbPbcGYLqqN746gIJyuzoHBOixU1nekq25wGR6WpHZ19137w-jB6GY6j6dPjZHg3jXIhsYsyzDgZptJcZWWRKjS8ACqLpCSBCaQ8F4a4XyuAIxBnBHkiMkxig4YyFP3gej933dr3DblOryqXU12bhuzGaQX-xpgh-1fKFEEgJjt59acUccwAUuXh5S-4tJu28fdq6efEQijuEexR3lrnWir1uq1Wpv3QDPQuHu3j0btk9Hc8vuVi31IR0Q-P0zRBCeITwKqJfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861343392</pqid></control><display><type>article</type><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, J. ; Kyungsuk Pyun</creator><creatorcontrib>Lim, J. ; Kyungsuk Pyun</creatorcontrib><description>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2008586</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cancer ; Classifiers ; Convex hull ; Cost engineering ; Costs ; Hidden Markov models ; Hulls (structures) ; Image analysis ; Image processing ; Image segmentation ; iso-cost line ; Machine learning ; Machine learning algorithms ; Mathematical models ; Object detection ; Preprocessing ; ROC convex analysis ; ROC curve ; Studies ; Tumors</subject><ispartof>IEEE signal processing letters, 2009-03, Vol.16 (3), p.172-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</citedby><cites>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4776580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4776580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, J.</creatorcontrib><creatorcontrib>Kyungsuk Pyun</creatorcontrib><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Classifiers</subject><subject>Convex hull</subject><subject>Cost engineering</subject><subject>Costs</subject><subject>Hidden Markov models</subject><subject>Hulls (structures)</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>iso-cost line</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical models</subject><subject>Object detection</subject><subject>Preprocessing</subject><subject>ROC convex analysis</subject><subject>ROC curve</subject><subject>Studies</subject><subject>Tumors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0bFOwzAQBuAIgUQp7EgsEQNMKWc7l9higqrQSq1AKsyWk1yqlDQucVqJt8eliIEBFp-H7-50-oPgnMGAMVA30_nzgAPIrwdlchD0GKKMuEjYof9DCpFSII-DE-eW4BGT2Atuh9Z10agsKe-qLYXjqiioCWemfbPbcGYLqqN746gIJyuzoHBOixU1nekq25wGR6WpHZ19137w-jB6GY6j6dPjZHg3jXIhsYsyzDgZptJcZWWRKjS8ACqLpCSBCaQ8F4a4XyuAIxBnBHkiMkxig4YyFP3gej933dr3DblOryqXU12bhuzGaQX-xpgh-1fKFEEgJjt59acUccwAUuXh5S-4tJu28fdq6efEQijuEexR3lrnWir1uq1Wpv3QDPQuHu3j0btk9Hc8vuVi31IR0Q-P0zRBCeITwKqJfg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lim, J.</creator><creator>Kyungsuk Pyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><author>Lim, J. ; Kyungsuk Pyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Classifiers</topic><topic>Convex hull</topic><topic>Cost engineering</topic><topic>Costs</topic><topic>Hidden Markov models</topic><topic>Hulls (structures)</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>iso-cost line</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical models</topic><topic>Object detection</topic><topic>Preprocessing</topic><topic>ROC convex analysis</topic><topic>ROC curve</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, J.</creatorcontrib><creatorcontrib>Kyungsuk Pyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, J.</au><au>Kyungsuk Pyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Effective Hidden Markov Model-Based Image Segmentation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>16</volume><issue>3</issue><spage>172</spage><epage>175</epage><pages>172-175</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2008586</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2009-03, Vol.16 (3), p.172-175 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_miscellaneous_34410079 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cancer Classifiers Convex hull Cost engineering Costs Hidden Markov models Hulls (structures) Image analysis Image processing Image segmentation iso-cost line Machine learning Machine learning algorithms Mathematical models Object detection Preprocessing ROC convex analysis ROC curve Studies Tumors |
title | Cost-Effective Hidden Markov Model-Based Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Effective%20Hidden%20Markov%20Model-Based%20Image%20Segmentation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lim,%20J.&rft.date=2009-03-01&rft.volume=16&rft.issue=3&rft.spage=172&rft.epage=175&rft.pages=172-175&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2008586&rft_dat=%3Cproquest_RIE%3E2316936341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861343392&rft_id=info:pmid/&rft_ieee_id=4776580&rfr_iscdi=true |