Cost-Effective Hidden Markov Model-Based Image Segmentation

Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2009-03, Vol.16 (3), p.172-175
Hauptverfasser: Lim, J., Kyungsuk Pyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 3
container_start_page 172
container_title IEEE signal processing letters
container_volume 16
creator Lim, J.
Kyungsuk Pyun
description Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.
doi_str_mv 10.1109/LSP.2008.2008586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34410079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4776580</ieee_id><sourcerecordid>2316936341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</originalsourceid><addsrcrecordid>eNqF0bFOwzAQBuAIgUQp7EgsEQNMKWc7l9higqrQSq1AKsyWk1yqlDQucVqJt8eliIEBFp-H7-50-oPgnMGAMVA30_nzgAPIrwdlchD0GKKMuEjYof9DCpFSII-DE-eW4BGT2Atuh9Z10agsKe-qLYXjqiioCWemfbPbcGYLqqN746gIJyuzoHBOixU1nekq25wGR6WpHZ19137w-jB6GY6j6dPjZHg3jXIhsYsyzDgZptJcZWWRKjS8ACqLpCSBCaQ8F4a4XyuAIxBnBHkiMkxig4YyFP3gej933dr3DblOryqXU12bhuzGaQX-xpgh-1fKFEEgJjt59acUccwAUuXh5S-4tJu28fdq6efEQijuEexR3lrnWir1uq1Wpv3QDPQuHu3j0btk9Hc8vuVi31IR0Q-P0zRBCeITwKqJfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861343392</pqid></control><display><type>article</type><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, J. ; Kyungsuk Pyun</creator><creatorcontrib>Lim, J. ; Kyungsuk Pyun</creatorcontrib><description>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2008586</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cancer ; Classifiers ; Convex hull ; Cost engineering ; Costs ; Hidden Markov models ; Hulls (structures) ; Image analysis ; Image processing ; Image segmentation ; iso-cost line ; Machine learning ; Machine learning algorithms ; Mathematical models ; Object detection ; Preprocessing ; ROC convex analysis ; ROC curve ; Studies ; Tumors</subject><ispartof>IEEE signal processing letters, 2009-03, Vol.16 (3), p.172-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</citedby><cites>FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4776580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4776580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, J.</creatorcontrib><creatorcontrib>Kyungsuk Pyun</creatorcontrib><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Classifiers</subject><subject>Convex hull</subject><subject>Cost engineering</subject><subject>Costs</subject><subject>Hidden Markov models</subject><subject>Hulls (structures)</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>iso-cost line</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical models</subject><subject>Object detection</subject><subject>Preprocessing</subject><subject>ROC convex analysis</subject><subject>ROC curve</subject><subject>Studies</subject><subject>Tumors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0bFOwzAQBuAIgUQp7EgsEQNMKWc7l9higqrQSq1AKsyWk1yqlDQucVqJt8eliIEBFp-H7-50-oPgnMGAMVA30_nzgAPIrwdlchD0GKKMuEjYof9DCpFSII-DE-eW4BGT2Atuh9Z10agsKe-qLYXjqiioCWemfbPbcGYLqqN746gIJyuzoHBOixU1nekq25wGR6WpHZ19137w-jB6GY6j6dPjZHg3jXIhsYsyzDgZptJcZWWRKjS8ACqLpCSBCaQ8F4a4XyuAIxBnBHkiMkxig4YyFP3gej933dr3DblOryqXU12bhuzGaQX-xpgh-1fKFEEgJjt59acUccwAUuXh5S-4tJu28fdq6efEQijuEexR3lrnWir1uq1Wpv3QDPQuHu3j0btk9Hc8vuVi31IR0Q-P0zRBCeITwKqJfg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lim, J.</creator><creator>Kyungsuk Pyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>Cost-Effective Hidden Markov Model-Based Image Segmentation</title><author>Lim, J. ; Kyungsuk Pyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b5b2ea197c9bfd795a2d0efd6fe356072c3ae2dde30250e21e0c63b564a5aeb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Classifiers</topic><topic>Convex hull</topic><topic>Cost engineering</topic><topic>Costs</topic><topic>Hidden Markov models</topic><topic>Hulls (structures)</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>iso-cost line</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical models</topic><topic>Object detection</topic><topic>Preprocessing</topic><topic>ROC convex analysis</topic><topic>ROC curve</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, J.</creatorcontrib><creatorcontrib>Kyungsuk Pyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, J.</au><au>Kyungsuk Pyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Effective Hidden Markov Model-Based Image Segmentation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>16</volume><issue>3</issue><spage>172</spage><epage>175</epage><pages>172-175</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Image segmentation is an important preprocessing step in a sophisticated and complex image processing algorithm. In segmenting real-world images, the cost of misclassification could depend on the true class. For example, in a two-class (negative or positive class) problem, the cost of misclassifying positive to negative class could not be equal to that of misclassifying negative to positive class. However, existing algorithms do not take into account the unequal misclassification cost. In this letter, motivated by recent advances in machine learning theory, we introduce a procedure to minimize the misclassification cost with class-dependent cost. The procedure assumes the hidden Markov model (HMM) which has been popularly used for image segmentation in recent years. We represent all feasible HMM-based segmenters (or classifiers) as a set of points in the receiver operating characteristic (ROC) space. Then, the optimal segmenter (or classifier) is found by computing the tangential point between the iso-cost line with given slope and the convex hull of the feasible set in the ROC space. We illustrate the procedure by segmenting aerial images with different selection of misclassification costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2008586</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2009-03, Vol.16 (3), p.172-175
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_miscellaneous_34410079
source IEEE Electronic Library (IEL)
subjects Algorithms
Cancer
Classifiers
Convex hull
Cost engineering
Costs
Hidden Markov models
Hulls (structures)
Image analysis
Image processing
Image segmentation
iso-cost line
Machine learning
Machine learning algorithms
Mathematical models
Object detection
Preprocessing
ROC convex analysis
ROC curve
Studies
Tumors
title Cost-Effective Hidden Markov Model-Based Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Effective%20Hidden%20Markov%20Model-Based%20Image%20Segmentation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lim,%20J.&rft.date=2009-03-01&rft.volume=16&rft.issue=3&rft.spage=172&rft.epage=175&rft.pages=172-175&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2008586&rft_dat=%3Cproquest_RIE%3E2316936341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861343392&rft_id=info:pmid/&rft_ieee_id=4776580&rfr_iscdi=true