A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects
Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitt...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2008-05, Vol.43 (5), p.1235-1246 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1246 |
---|---|
container_issue | 5 |
container_start_page | 1235 |
container_title | IEEE journal of solid-state circuits |
container_volume | 43 |
creator | Palermo, Samuel Emami-Neyestanak, Azita Horowitz, Mark |
description | Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 . |
doi_str_mv | 10.1109/JSSC.2008.920330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34405009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4494666</ieee_id><sourcerecordid>875064831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWB93wUsQ1NPWyeY53qT4ROmhCt5CNs3CSrtbk63gf2-WigcPehqG-c3HzPcRcsRgzBjgxcNsNhmXAGaMJXAOW2TEpDQF0_x1m4wAmCnyBHbJXkpvuRXCsBG5vKIItF3SydN0Rpmit9VFos_RtcmH5iNEWneRTld9492C3rd9iL5r2-D7dEB2ardI4fC77pOXm-vnyV3xOL29n1w9Fl5I3RfScyUq5Eo64Iq7OTOywlqXBlnNKzBz4dGLuapCiUw6RMGddl6HWgbUiu-T843uKnbv65B6u2zycYuFa0O3ThazbKk0yn9JoyUoYTjL5NmfJBcCJABm8OQX-NatY5v_tcjKUiDoAYIN5GOXUgy1XcVm6eKnZWCHdOyQjh3SsZt08srpt65L2dk6G-6b9LOXISg1Doceb7gmhPAzFgKFUop_AaYMk0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912249079</pqid></control><display><type>article</type><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</creator><creatorcontrib>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</creatorcontrib><description>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2008.920330</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Channels ; Circuit properties ; Clock and data recovery ; Clocks ; CMOS ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronics ; equalization ; Exact sciences and technology ; High speed optical techniques ; Integrated circuits ; Integrated optics. Optical fibers and wave guides ; laser driver ; Miscellaneous ; Optical and optoelectronic circuits ; Optical buffering ; Optical feedback ; Optical interconnections ; Optical interconnects ; optical receiver ; Optical receivers ; Optical sensors ; Optical transmitters ; Optoelectronic devices ; Receivers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; serial transceiver ; Transceivers ; Transmitters ; VCSEL ; Vertical cavity surface emission lasers ; Vertical cavity surface emitting lasers</subject><ispartof>IEEE journal of solid-state circuits, 2008-05, Vol.43 (5), p.1235-1246</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</citedby><cites>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4494666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4494666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20302791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palermo, Samuel</creatorcontrib><creatorcontrib>Emami-Neyestanak, Azita</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Channels</subject><subject>Circuit properties</subject><subject>Clock and data recovery</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>equalization</subject><subject>Exact sciences and technology</subject><subject>High speed optical techniques</subject><subject>Integrated circuits</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>laser driver</subject><subject>Miscellaneous</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical buffering</subject><subject>Optical feedback</subject><subject>Optical interconnections</subject><subject>Optical interconnects</subject><subject>optical receiver</subject><subject>Optical receivers</subject><subject>Optical sensors</subject><subject>Optical transmitters</subject><subject>Optoelectronic devices</subject><subject>Receivers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>serial transceiver</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>VCSEL</subject><subject>Vertical cavity surface emission lasers</subject><subject>Vertical cavity surface emitting lasers</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWB93wUsQ1NPWyeY53qT4ROmhCt5CNs3CSrtbk63gf2-WigcPehqG-c3HzPcRcsRgzBjgxcNsNhmXAGaMJXAOW2TEpDQF0_x1m4wAmCnyBHbJXkpvuRXCsBG5vKIItF3SydN0Rpmit9VFos_RtcmH5iNEWneRTld9492C3rd9iL5r2-D7dEB2ardI4fC77pOXm-vnyV3xOL29n1w9Fl5I3RfScyUq5Eo64Iq7OTOywlqXBlnNKzBz4dGLuapCiUw6RMGddl6HWgbUiu-T843uKnbv65B6u2zycYuFa0O3ThazbKk0yn9JoyUoYTjL5NmfJBcCJABm8OQX-NatY5v_tcjKUiDoAYIN5GOXUgy1XcVm6eKnZWCHdOyQjh3SsZt08srpt65L2dk6G-6b9LOXISg1Doceb7gmhPAzFgKFUop_AaYMk0k</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Palermo, Samuel</creator><creator>Emami-Neyestanak, Azita</creator><creator>Horowitz, Mark</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080501</creationdate><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><author>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Channels</topic><topic>Circuit properties</topic><topic>Clock and data recovery</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>equalization</topic><topic>Exact sciences and technology</topic><topic>High speed optical techniques</topic><topic>Integrated circuits</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>laser driver</topic><topic>Miscellaneous</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical buffering</topic><topic>Optical feedback</topic><topic>Optical interconnections</topic><topic>Optical interconnects</topic><topic>optical receiver</topic><topic>Optical receivers</topic><topic>Optical sensors</topic><topic>Optical transmitters</topic><topic>Optoelectronic devices</topic><topic>Receivers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>serial transceiver</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>VCSEL</topic><topic>Vertical cavity surface emission lasers</topic><topic>Vertical cavity surface emitting lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, Samuel</creatorcontrib><creatorcontrib>Emami-Neyestanak, Azita</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Palermo, Samuel</au><au>Emami-Neyestanak, Azita</au><au>Horowitz, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>5</issue><spage>1235</spage><epage>1246</epage><pages>1235-1246</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2008.920330</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2008-05, Vol.43 (5), p.1235-1246 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_miscellaneous_34405009 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Architecture Channels Circuit properties Clock and data recovery Clocks CMOS Design. Technologies. Operation analysis. Testing Electric, optical and optoelectronic circuits Electronics equalization Exact sciences and technology High speed optical techniques Integrated circuits Integrated optics. Optical fibers and wave guides laser driver Miscellaneous Optical and optoelectronic circuits Optical buffering Optical feedback Optical interconnections Optical interconnects optical receiver Optical receivers Optical sensors Optical transmitters Optoelectronic devices Receivers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices serial transceiver Transceivers Transmitters VCSEL Vertical cavity surface emission lasers Vertical cavity surface emitting lasers |
title | A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2090%20nm%20CMOS%2016%20Gb/s%20Transceiver%20for%20Optical%20Interconnects&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Palermo,%20Samuel&rft.date=2008-05-01&rft.volume=43&rft.issue=5&rft.spage=1235&rft.epage=1246&rft.pages=1235-1246&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2008.920330&rft_dat=%3Cproquest_RIE%3E875064831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912249079&rft_id=info:pmid/&rft_ieee_id=4494666&rfr_iscdi=true |