A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2008-05, Vol.43 (5), p.1235-1246
Hauptverfasser: Palermo, Samuel, Emami-Neyestanak, Azita, Horowitz, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1246
container_issue 5
container_start_page 1235
container_title IEEE journal of solid-state circuits
container_volume 43
creator Palermo, Samuel
Emami-Neyestanak, Azita
Horowitz, Mark
description Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .
doi_str_mv 10.1109/JSSC.2008.920330
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34405009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4494666</ieee_id><sourcerecordid>875064831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWB93wUsQ1NPWyeY53qT4ROmhCt5CNs3CSrtbk63gf2-WigcPehqG-c3HzPcRcsRgzBjgxcNsNhmXAGaMJXAOW2TEpDQF0_x1m4wAmCnyBHbJXkpvuRXCsBG5vKIItF3SydN0Rpmit9VFos_RtcmH5iNEWneRTld9492C3rd9iL5r2-D7dEB2ardI4fC77pOXm-vnyV3xOL29n1w9Fl5I3RfScyUq5Eo64Iq7OTOywlqXBlnNKzBz4dGLuapCiUw6RMGddl6HWgbUiu-T843uKnbv65B6u2zycYuFa0O3ThazbKk0yn9JoyUoYTjL5NmfJBcCJABm8OQX-NatY5v_tcjKUiDoAYIN5GOXUgy1XcVm6eKnZWCHdOyQjh3SsZt08srpt65L2dk6G-6b9LOXISg1Doceb7gmhPAzFgKFUop_AaYMk0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912249079</pqid></control><display><type>article</type><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</creator><creatorcontrib>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</creatorcontrib><description>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2008.920330</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Channels ; Circuit properties ; Clock and data recovery ; Clocks ; CMOS ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronics ; equalization ; Exact sciences and technology ; High speed optical techniques ; Integrated circuits ; Integrated optics. Optical fibers and wave guides ; laser driver ; Miscellaneous ; Optical and optoelectronic circuits ; Optical buffering ; Optical feedback ; Optical interconnections ; Optical interconnects ; optical receiver ; Optical receivers ; Optical sensors ; Optical transmitters ; Optoelectronic devices ; Receivers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; serial transceiver ; Transceivers ; Transmitters ; VCSEL ; Vertical cavity surface emission lasers ; Vertical cavity surface emitting lasers</subject><ispartof>IEEE journal of solid-state circuits, 2008-05, Vol.43 (5), p.1235-1246</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</citedby><cites>FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4494666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4494666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20302791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palermo, Samuel</creatorcontrib><creatorcontrib>Emami-Neyestanak, Azita</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Channels</subject><subject>Circuit properties</subject><subject>Clock and data recovery</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>equalization</subject><subject>Exact sciences and technology</subject><subject>High speed optical techniques</subject><subject>Integrated circuits</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>laser driver</subject><subject>Miscellaneous</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical buffering</subject><subject>Optical feedback</subject><subject>Optical interconnections</subject><subject>Optical interconnects</subject><subject>optical receiver</subject><subject>Optical receivers</subject><subject>Optical sensors</subject><subject>Optical transmitters</subject><subject>Optoelectronic devices</subject><subject>Receivers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>serial transceiver</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>VCSEL</subject><subject>Vertical cavity surface emission lasers</subject><subject>Vertical cavity surface emitting lasers</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWB93wUsQ1NPWyeY53qT4ROmhCt5CNs3CSrtbk63gf2-WigcPehqG-c3HzPcRcsRgzBjgxcNsNhmXAGaMJXAOW2TEpDQF0_x1m4wAmCnyBHbJXkpvuRXCsBG5vKIItF3SydN0Rpmit9VFos_RtcmH5iNEWneRTld9492C3rd9iL5r2-D7dEB2ardI4fC77pOXm-vnyV3xOL29n1w9Fl5I3RfScyUq5Eo64Iq7OTOywlqXBlnNKzBz4dGLuapCiUw6RMGddl6HWgbUiu-T843uKnbv65B6u2zycYuFa0O3ThazbKk0yn9JoyUoYTjL5NmfJBcCJABm8OQX-NatY5v_tcjKUiDoAYIN5GOXUgy1XcVm6eKnZWCHdOyQjh3SsZt08srpt65L2dk6G-6b9LOXISg1Doceb7gmhPAzFgKFUop_AaYMk0k</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Palermo, Samuel</creator><creator>Emami-Neyestanak, Azita</creator><creator>Horowitz, Mark</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080501</creationdate><title>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</title><author>Palermo, Samuel ; Emami-Neyestanak, Azita ; Horowitz, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-5c364b9365a0363ad185b9f72891f3b08d4c9c4d6be2915a9943a7ac7ef5e9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Channels</topic><topic>Circuit properties</topic><topic>Clock and data recovery</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>equalization</topic><topic>Exact sciences and technology</topic><topic>High speed optical techniques</topic><topic>Integrated circuits</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>laser driver</topic><topic>Miscellaneous</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical buffering</topic><topic>Optical feedback</topic><topic>Optical interconnections</topic><topic>Optical interconnects</topic><topic>optical receiver</topic><topic>Optical receivers</topic><topic>Optical sensors</topic><topic>Optical transmitters</topic><topic>Optoelectronic devices</topic><topic>Receivers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>serial transceiver</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>VCSEL</topic><topic>Vertical cavity surface emission lasers</topic><topic>Vertical cavity surface emitting lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, Samuel</creatorcontrib><creatorcontrib>Emami-Neyestanak, Azita</creatorcontrib><creatorcontrib>Horowitz, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Palermo, Samuel</au><au>Emami-Neyestanak, Azita</au><au>Horowitz, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>5</issue><spage>1235</spage><epage>1246</epage><pages>1235-1246</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm 2 .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2008.920330</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2008-05, Vol.43 (5), p.1235-1246
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_miscellaneous_34405009
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture
Channels
Circuit properties
Clock and data recovery
Clocks
CMOS
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronics
equalization
Exact sciences and technology
High speed optical techniques
Integrated circuits
Integrated optics. Optical fibers and wave guides
laser driver
Miscellaneous
Optical and optoelectronic circuits
Optical buffering
Optical feedback
Optical interconnections
Optical interconnects
optical receiver
Optical receivers
Optical sensors
Optical transmitters
Optoelectronic devices
Receivers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
serial transceiver
Transceivers
Transmitters
VCSEL
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
title A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2090%20nm%20CMOS%2016%20Gb/s%20Transceiver%20for%20Optical%20Interconnects&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Palermo,%20Samuel&rft.date=2008-05-01&rft.volume=43&rft.issue=5&rft.spage=1235&rft.epage=1246&rft.pages=1235-1246&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2008.920330&rft_dat=%3Cproquest_RIE%3E875064831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912249079&rft_id=info:pmid/&rft_ieee_id=4494666&rfr_iscdi=true