A Weighted Generalization of Gao's n + D − 1 Theorem
Let G denote a finite abelian group of order n and Davenport constant D, and put m = n + D − 1. Let x = (x1,. . .,xm) ∈ Gm. Gao's theorem states that there is a reordering (xj1, . . ., xjm) of x such that $$ \sum_{ 1\leq i\leq n}x_{j_{i}}=0. $$ Let w = (x1, . . ., wm) ∈ ℤm. As a corollary of th...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2008-11, Vol.17 (6), p.793-798 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | 6 |
container_start_page | 793 |
container_title | Combinatorics, probability & computing |
container_volume | 17 |
creator | HAMIDOUNE, YAHYA O. |
description | Let G denote a finite abelian group of order n and Davenport constant D, and put m = n + D − 1. Let x = (x1,. . .,xm) ∈ Gm. Gao's theorem states that there is a reordering (xj1, . . ., xjm) of x such that
$$
\sum_{ 1\leq i\leq n}x_{j_{i}}=0.
$$ Let w = (x1, . . ., wm) ∈ ℤm. As a corollary of the main result, we show that there are reorderings (xj1, . . ., xjm) of x and (wk1, . . ., wkm) of w, such that
$$
\sum_{ 1\leq i\leq n}w_{k_{i}}x_{j_{i}}=\biggl(\sum_{ 1\leq i\leq n}w_{k_{i}}\biggr)x_{j_{1}},
$$
where xj1 is the most repeated value in x. For w = (1, . . ., 1), this result reduces to Gao's theorem. |
doi_str_mv | 10.1017/S0963548308009425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34399045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548308009425</cupid><sourcerecordid>1786933631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3435-f1a6b2ff68cf6bfbfa27947d5ccbf7f84e4ac4a2fdd6761351e1378f8cf884003</originalsourceid><addsrcrecordid>eNp1kEtOwzAYhC0EEqVwAHYWC1iggB2_4mXFIyBVRailLC0nsduUNC52KgEnYM0ROQmpWoEEYvUv5pt_RgPAIUZnGGFxPkSSE0YTghKEJI3ZFuhgymUUY062QWclRyt9F-yFMEMIMcZRB_AefDTlZNqYAqamNl5X5ZtuSldDZ2Gq3UmANTyFl_Dz_QNiOJoa5818H-xYXQVzsLld8HB9Nbq4ifp36e1Frx_lhBIWWax5FlvLk9zyzGZWx0JSUbA8z6ywCTVU51THtii44JgwbDARiW3xJKEIkS44Xv9dePe8NKFR8zLkpqp0bdwyqDZFSkRZCx79Amdu6eu2m4oRkYJyJlsIr6HcuxC8sWrhy7n2rwojtZpR_Zmx9URrTxka8_Jt0P5JcUEEUzy9V8PxeDAYIan6LU82GXqe-bKYmJ8m_6d8Ab96gTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203974659</pqid></control><display><type>article</type><title>A Weighted Generalization of Gao's n + D − 1 Theorem</title><source>Cambridge University Press Journals Complete</source><creator>HAMIDOUNE, YAHYA O.</creator><creatorcontrib>HAMIDOUNE, YAHYA O.</creatorcontrib><description>Let G denote a finite abelian group of order n and Davenport constant D, and put m = n + D − 1. Let x = (x1,. . .,xm) ∈ Gm. Gao's theorem states that there is a reordering (xj1, . . ., xjm) of x such that
$$
\sum_{ 1\leq i\leq n}x_{j_{i}}=0.
$$ Let w = (x1, . . ., wm) ∈ ℤm. As a corollary of the main result, we show that there are reorderings (xj1, . . ., xjm) of x and (wk1, . . ., wkm) of w, such that
$$
\sum_{ 1\leq i\leq n}w_{k_{i}}x_{j_{i}}=\biggl(\sum_{ 1\leq i\leq n}w_{k_{i}}\biggr)x_{j_{1}},
$$
where xj1 is the most repeated value in x. For w = (1, . . ., 1), this result reduces to Gao's theorem.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548308009425</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Combinatorics, probability & computing, 2008-11, Vol.17 (6), p.793-798</ispartof><rights>Copyright © Cambridge University Press 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3435-f1a6b2ff68cf6bfbfa27947d5ccbf7f84e4ac4a2fdd6761351e1378f8cf884003</citedby><cites>FETCH-LOGICAL-c3435-f1a6b2ff68cf6bfbfa27947d5ccbf7f84e4ac4a2fdd6761351e1378f8cf884003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548308009425/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>HAMIDOUNE, YAHYA O.</creatorcontrib><title>A Weighted Generalization of Gao's n + D − 1 Theorem</title><title>Combinatorics, probability & computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>Let G denote a finite abelian group of order n and Davenport constant D, and put m = n + D − 1. Let x = (x1,. . .,xm) ∈ Gm. Gao's theorem states that there is a reordering (xj1, . . ., xjm) of x such that
$$
\sum_{ 1\leq i\leq n}x_{j_{i}}=0.
$$ Let w = (x1, . . ., wm) ∈ ℤm. As a corollary of the main result, we show that there are reorderings (xj1, . . ., xjm) of x and (wk1, . . ., wkm) of w, such that
$$
\sum_{ 1\leq i\leq n}w_{k_{i}}x_{j_{i}}=\biggl(\sum_{ 1\leq i\leq n}w_{k_{i}}\biggr)x_{j_{1}},
$$
where xj1 is the most repeated value in x. For w = (1, . . ., 1), this result reduces to Gao's theorem.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtOwzAYhC0EEqVwAHYWC1iggB2_4mXFIyBVRailLC0nsduUNC52KgEnYM0ROQmpWoEEYvUv5pt_RgPAIUZnGGFxPkSSE0YTghKEJI3ZFuhgymUUY062QWclRyt9F-yFMEMIMcZRB_AefDTlZNqYAqamNl5X5ZtuSldDZ2Gq3UmANTyFl_Dz_QNiOJoa5818H-xYXQVzsLld8HB9Nbq4ifp36e1Frx_lhBIWWax5FlvLk9zyzGZWx0JSUbA8z6ywCTVU51THtii44JgwbDARiW3xJKEIkS44Xv9dePe8NKFR8zLkpqp0bdwyqDZFSkRZCx79Amdu6eu2m4oRkYJyJlsIr6HcuxC8sWrhy7n2rwojtZpR_Zmx9URrTxka8_Jt0P5JcUEEUzy9V8PxeDAYIan6LU82GXqe-bKYmJ8m_6d8Ab96gTI</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>HAMIDOUNE, YAHYA O.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200811</creationdate><title>A Weighted Generalization of Gao's n + D − 1 Theorem</title><author>HAMIDOUNE, YAHYA O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3435-f1a6b2ff68cf6bfbfa27947d5ccbf7f84e4ac4a2fdd6761351e1378f8cf884003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMIDOUNE, YAHYA O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMIDOUNE, YAHYA O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Weighted Generalization of Gao's n + D − 1 Theorem</atitle><jtitle>Combinatorics, probability & computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2008-11</date><risdate>2008</risdate><volume>17</volume><issue>6</issue><spage>793</spage><epage>798</epage><pages>793-798</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>Let G denote a finite abelian group of order n and Davenport constant D, and put m = n + D − 1. Let x = (x1,. . .,xm) ∈ Gm. Gao's theorem states that there is a reordering (xj1, . . ., xjm) of x such that
$$
\sum_{ 1\leq i\leq n}x_{j_{i}}=0.
$$ Let w = (x1, . . ., wm) ∈ ℤm. As a corollary of the main result, we show that there are reorderings (xj1, . . ., xjm) of x and (wk1, . . ., wkm) of w, such that
$$
\sum_{ 1\leq i\leq n}w_{k_{i}}x_{j_{i}}=\biggl(\sum_{ 1\leq i\leq n}w_{k_{i}}\biggr)x_{j_{1}},
$$
where xj1 is the most repeated value in x. For w = (1, . . ., 1), this result reduces to Gao's theorem.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548308009425</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-5483 |
ispartof | Combinatorics, probability & computing, 2008-11, Vol.17 (6), p.793-798 |
issn | 0963-5483 1469-2163 |
language | eng |
recordid | cdi_proquest_miscellaneous_34399045 |
source | Cambridge University Press Journals Complete |
title | A Weighted Generalization of Gao's n + D − 1 Theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Weighted%20Generalization%20of%20Gao's%20n%20+%20D%20%E2%88%92%201%20Theorem&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=HAMIDOUNE,%20YAHYA%20O.&rft.date=2008-11&rft.volume=17&rft.issue=6&rft.spage=793&rft.epage=798&rft.pages=793-798&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548308009425&rft_dat=%3Cproquest_cross%3E1786933631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203974659&rft_id=info:pmid/&rft_cupid=10_1017_S0963548308009425&rfr_iscdi=true |