Structure and magnetism of the β-Mn–Co solid-solution phase

The crystal structure of the β-Mn 1− t Co t solid-solution phase (0 ≤ t ≤ 0.40) has been studied with powder neutron (10 and 298 K) and single-crystal X-ray (150 K) diffraction methods. The lattice-constant ( a) isotherms at 10, 150, and 298 K go through flat maxima between t = 0.10 and 0.25. Up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2009-05, Vol.476 (1), p.9-13
Hauptverfasser: Karlsen, O.B., Kjekshus, A., Fjellvåg, H., Ravindran, P., Vidya, R., Hauback, B.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 9
container_title Journal of alloys and compounds
container_volume 476
creator Karlsen, O.B.
Kjekshus, A.
Fjellvåg, H.
Ravindran, P.
Vidya, R.
Hauback, B.C.
description The crystal structure of the β-Mn 1− t Co t solid-solution phase (0 ≤ t ≤ 0.40) has been studied with powder neutron (10 and 298 K) and single-crystal X-ray (150 K) diffraction methods. The lattice-constant ( a) isotherms at 10, 150, and 298 K go through flat maxima between t = 0.10 and 0.25. Up to t = 0.25 all Co is found to substitute at the T1 ( T1 = Mn and/or Co) site of the β-Mn crystal structure (position 8 c of space group P4 132) whereas for t = 0.40 also the T2 site (position 12 d) is partly occupied by Co (some 0.2 Mn + 0.8 Co occupancy of the T2 site). The variable positional parameters x (for T1) and y (for T2) exhibit remarkably small variations with composition ( t) and temperature. The present low-temperature powder neutron-diffraction data confirm the earlier finding that the β-Mn 1− t Co t phase does not exhibit conventional co-operative magnetic ordering. However, the appearance of diffuse scattering in the low-temperature diffraction patterns is clearly generated by short-range ordering of magnetic moments, which owing to the atomic arrangement of the β-Mn-type structure becomes geometric frustrated. The temperature dependence of the magnetic susceptibility for β-Mn 1− t Co t is re-measured. Neglecting β-Mn itself (which exhibits virtually temperature-independent paramagnetism), our magnetic susceptibility curves above some 80 K for t = 0.15, 0.25, and 0.40 can with good-will be described by the Curie–Weiss relation, indicating antiferromagnetic correlations at low temperatures. However, the thus involved paramagnetic moments and Weiss constants must indeed be stamped as unphysically large.
doi_str_mv 10.1016/j.jallcom.2008.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34372510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838808014667</els_id><sourcerecordid>34372510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-3b769e7c953509fe3b169bc46f149ffc2efe015810b1cd3d0e16e500123fbe783</originalsourceid><addsrcrecordid>eNqFkDtOxDAQhi0EEsvCEZDSQJcwE28ebkBoxUsCUQC15Thj1qskXuwEiY47cBMOwiE4CUG7oqWZab5_Hh9jhwgJAuYny2Spmka7NkkBygREAohbbIJlweNZnottNgGRZnHJy3KX7YWwBAAUHCfs9KH3g-4HT5Hq6qhVzx31NrSRM1G_oOjrM77rvt8_5i4KrrF1PNaht66LVgsVaJ_tGNUEOtj0KXu6vHicX8e391c38_PbWPMC-phXRS6o0CLjGQhDvMJcVHqWG5wJY3RKhgCzEqFCXfMaCHPKxhtTbioqSj5lx-u5K-9eBgq9bG3Q1DSqIzcEyWe8SDOEEczWoPYuBE9GrrxtlX-TCPLXllzKjS35a0uCkKOtMXe0WaCCVo3xqtM2_IVTzLhIOR-5szVH47evlrwM2lKnqbaedC9rZ__Z9AO3gYPG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34372510</pqid></control><display><type>article</type><title>Structure and magnetism of the β-Mn–Co solid-solution phase</title><source>Elsevier ScienceDirect Journals</source><creator>Karlsen, O.B. ; Kjekshus, A. ; Fjellvåg, H. ; Ravindran, P. ; Vidya, R. ; Hauback, B.C.</creator><creatorcontrib>Karlsen, O.B. ; Kjekshus, A. ; Fjellvåg, H. ; Ravindran, P. ; Vidya, R. ; Hauback, B.C.</creatorcontrib><description>The crystal structure of the β-Mn 1− t Co t solid-solution phase (0 ≤ t ≤ 0.40) has been studied with powder neutron (10 and 298 K) and single-crystal X-ray (150 K) diffraction methods. The lattice-constant ( a) isotherms at 10, 150, and 298 K go through flat maxima between t = 0.10 and 0.25. Up to t = 0.25 all Co is found to substitute at the T1 ( T1 = Mn and/or Co) site of the β-Mn crystal structure (position 8 c of space group P4 132) whereas for t = 0.40 also the T2 site (position 12 d) is partly occupied by Co (some 0.2 Mn + 0.8 Co occupancy of the T2 site). The variable positional parameters x (for T1) and y (for T2) exhibit remarkably small variations with composition ( t) and temperature. The present low-temperature powder neutron-diffraction data confirm the earlier finding that the β-Mn 1− t Co t phase does not exhibit conventional co-operative magnetic ordering. However, the appearance of diffuse scattering in the low-temperature diffraction patterns is clearly generated by short-range ordering of magnetic moments, which owing to the atomic arrangement of the β-Mn-type structure becomes geometric frustrated. The temperature dependence of the magnetic susceptibility for β-Mn 1− t Co t is re-measured. Neglecting β-Mn itself (which exhibits virtually temperature-independent paramagnetism), our magnetic susceptibility curves above some 80 K for t = 0.15, 0.25, and 0.40 can with good-will be described by the Curie–Weiss relation, indicating antiferromagnetic correlations at low temperatures. However, the thus involved paramagnetic moments and Weiss constants must indeed be stamped as unphysically large.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2008.09.011</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Geometric frustration ; Magnetism ; Neutron diffraction and scattering ; Physics ; Single-crystal and powder diffraction ; Solid-solution ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Journal of alloys and compounds, 2009-05, Vol.476 (1), p.9-13</ispartof><rights>2008</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-3b769e7c953509fe3b169bc46f149ffc2efe015810b1cd3d0e16e500123fbe783</citedby><cites>FETCH-LOGICAL-c370t-3b769e7c953509fe3b169bc46f149ffc2efe015810b1cd3d0e16e500123fbe783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838808014667$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21539233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlsen, O.B.</creatorcontrib><creatorcontrib>Kjekshus, A.</creatorcontrib><creatorcontrib>Fjellvåg, H.</creatorcontrib><creatorcontrib>Ravindran, P.</creatorcontrib><creatorcontrib>Vidya, R.</creatorcontrib><creatorcontrib>Hauback, B.C.</creatorcontrib><title>Structure and magnetism of the β-Mn–Co solid-solution phase</title><title>Journal of alloys and compounds</title><description>The crystal structure of the β-Mn 1− t Co t solid-solution phase (0 ≤ t ≤ 0.40) has been studied with powder neutron (10 and 298 K) and single-crystal X-ray (150 K) diffraction methods. The lattice-constant ( a) isotherms at 10, 150, and 298 K go through flat maxima between t = 0.10 and 0.25. Up to t = 0.25 all Co is found to substitute at the T1 ( T1 = Mn and/or Co) site of the β-Mn crystal structure (position 8 c of space group P4 132) whereas for t = 0.40 also the T2 site (position 12 d) is partly occupied by Co (some 0.2 Mn + 0.8 Co occupancy of the T2 site). The variable positional parameters x (for T1) and y (for T2) exhibit remarkably small variations with composition ( t) and temperature. The present low-temperature powder neutron-diffraction data confirm the earlier finding that the β-Mn 1− t Co t phase does not exhibit conventional co-operative magnetic ordering. However, the appearance of diffuse scattering in the low-temperature diffraction patterns is clearly generated by short-range ordering of magnetic moments, which owing to the atomic arrangement of the β-Mn-type structure becomes geometric frustrated. The temperature dependence of the magnetic susceptibility for β-Mn 1− t Co t is re-measured. Neglecting β-Mn itself (which exhibits virtually temperature-independent paramagnetism), our magnetic susceptibility curves above some 80 K for t = 0.15, 0.25, and 0.40 can with good-will be described by the Curie–Weiss relation, indicating antiferromagnetic correlations at low temperatures. However, the thus involved paramagnetic moments and Weiss constants must indeed be stamped as unphysically large.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Geometric frustration</subject><subject>Magnetism</subject><subject>Neutron diffraction and scattering</subject><subject>Physics</subject><subject>Single-crystal and powder diffraction</subject><subject>Solid-solution</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkDtOxDAQhi0EEsvCEZDSQJcwE28ebkBoxUsCUQC15Thj1qskXuwEiY47cBMOwiE4CUG7oqWZab5_Hh9jhwgJAuYny2Spmka7NkkBygREAohbbIJlweNZnottNgGRZnHJy3KX7YWwBAAUHCfs9KH3g-4HT5Hq6qhVzx31NrSRM1G_oOjrM77rvt8_5i4KrrF1PNaht66LVgsVaJ_tGNUEOtj0KXu6vHicX8e391c38_PbWPMC-phXRS6o0CLjGQhDvMJcVHqWG5wJY3RKhgCzEqFCXfMaCHPKxhtTbioqSj5lx-u5K-9eBgq9bG3Q1DSqIzcEyWe8SDOEEczWoPYuBE9GrrxtlX-TCPLXllzKjS35a0uCkKOtMXe0WaCCVo3xqtM2_IVTzLhIOR-5szVH47evlrwM2lKnqbaedC9rZ__Z9AO3gYPG</recordid><startdate>20090512</startdate><enddate>20090512</enddate><creator>Karlsen, O.B.</creator><creator>Kjekshus, A.</creator><creator>Fjellvåg, H.</creator><creator>Ravindran, P.</creator><creator>Vidya, R.</creator><creator>Hauback, B.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090512</creationdate><title>Structure and magnetism of the β-Mn–Co solid-solution phase</title><author>Karlsen, O.B. ; Kjekshus, A. ; Fjellvåg, H. ; Ravindran, P. ; Vidya, R. ; Hauback, B.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-3b769e7c953509fe3b169bc46f149ffc2efe015810b1cd3d0e16e500123fbe783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Geometric frustration</topic><topic>Magnetism</topic><topic>Neutron diffraction and scattering</topic><topic>Physics</topic><topic>Single-crystal and powder diffraction</topic><topic>Solid-solution</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsen, O.B.</creatorcontrib><creatorcontrib>Kjekshus, A.</creatorcontrib><creatorcontrib>Fjellvåg, H.</creatorcontrib><creatorcontrib>Ravindran, P.</creatorcontrib><creatorcontrib>Vidya, R.</creatorcontrib><creatorcontrib>Hauback, B.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsen, O.B.</au><au>Kjekshus, A.</au><au>Fjellvåg, H.</au><au>Ravindran, P.</au><au>Vidya, R.</au><au>Hauback, B.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and magnetism of the β-Mn–Co solid-solution phase</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2009-05-12</date><risdate>2009</risdate><volume>476</volume><issue>1</issue><spage>9</spage><epage>13</epage><pages>9-13</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The crystal structure of the β-Mn 1− t Co t solid-solution phase (0 ≤ t ≤ 0.40) has been studied with powder neutron (10 and 298 K) and single-crystal X-ray (150 K) diffraction methods. The lattice-constant ( a) isotherms at 10, 150, and 298 K go through flat maxima between t = 0.10 and 0.25. Up to t = 0.25 all Co is found to substitute at the T1 ( T1 = Mn and/or Co) site of the β-Mn crystal structure (position 8 c of space group P4 132) whereas for t = 0.40 also the T2 site (position 12 d) is partly occupied by Co (some 0.2 Mn + 0.8 Co occupancy of the T2 site). The variable positional parameters x (for T1) and y (for T2) exhibit remarkably small variations with composition ( t) and temperature. The present low-temperature powder neutron-diffraction data confirm the earlier finding that the β-Mn 1− t Co t phase does not exhibit conventional co-operative magnetic ordering. However, the appearance of diffuse scattering in the low-temperature diffraction patterns is clearly generated by short-range ordering of magnetic moments, which owing to the atomic arrangement of the β-Mn-type structure becomes geometric frustrated. The temperature dependence of the magnetic susceptibility for β-Mn 1− t Co t is re-measured. Neglecting β-Mn itself (which exhibits virtually temperature-independent paramagnetism), our magnetic susceptibility curves above some 80 K for t = 0.15, 0.25, and 0.40 can with good-will be described by the Curie–Weiss relation, indicating antiferromagnetic correlations at low temperatures. However, the thus involved paramagnetic moments and Weiss constants must indeed be stamped as unphysically large.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2008.09.011</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2009-05, Vol.476 (1), p.9-13
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_34372510
source Elsevier ScienceDirect Journals
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Geometric frustration
Magnetism
Neutron diffraction and scattering
Physics
Single-crystal and powder diffraction
Solid-solution
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
title Structure and magnetism of the β-Mn–Co solid-solution phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20magnetism%20of%20the%20%CE%B2-Mn%E2%80%93Co%20solid-solution%20phase&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Karlsen,%20O.B.&rft.date=2009-05-12&rft.volume=476&rft.issue=1&rft.spage=9&rft.epage=13&rft.pages=9-13&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2008.09.011&rft_dat=%3Cproquest_cross%3E34372510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34372510&rft_id=info:pmid/&rft_els_id=S0925838808014667&rfr_iscdi=true