Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures

Urban development within a watershed can take on a wide and diverse range of spatial patterns. The terms “sprawl” and “clustered” development, for example, are frequent in the literature, spanning the spectrum of possible spatial patterns of urban development. The relationship between flood conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrologic engineering 2009-04, Vol.14 (4), p.416-424
Hauptverfasser: Mejía, Alfonso I, Moglen, Glenn E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 4
container_start_page 416
container_title Journal of hydrologic engineering
container_volume 14
creator Mejía, Alfonso I
Moglen, Glenn E
description Urban development within a watershed can take on a wide and diverse range of spatial patterns. The terms “sprawl” and “clustered” development, for example, are frequent in the literature, spanning the spectrum of possible spatial patterns of urban development. The relationship between flood conditions and the spatial distribution of the urban development has been poorly studied, often because of limitations in streamflow data availability or the common use of lumped watershed models in urban hydrologic modeling. We study this relationship with an optimization-based approach that accounts directly for the spatial distribution of imperviousness to investigate how the urban spatial pattern will affect flood peaks and how it can be used to reduce or minimize undesirable impacts to water resources. We employ several water resources-based objective functions to perform optimizations that result in distinct spatial patterns of urbanization showing characteristics of both sprawl and clustered development, depending on the objective function used. We conclude that the approach followed here and the resulting optimized landscapes provide a helpful understanding of the important role played by the spatial form of the urban pattern when trying to minimize impacts to water resources. One objective function, crafted to approximate ecologically based imperviousness threshold policies, resulted in an optimized urbanization pattern suggesting that unintended consequences of low density sprawl may follow from such policies. This specific finding underscores the general value of our optimization-based approach for planning and managing new urban development around water resources.
doi_str_mv 10.1061/(ASCE)1084-0699(2009)14:4(416)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34359615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34359615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-cd6ac0222c8b468c3b24eeec55d4c81c016d97696b8c47e598288d059cdf40c93</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhosoOKf_IaexHapJm2aJ4GHOTYXJBnPnkKZfsbNtatIO9NebMvUoOSSB5335vicIRgRfE8zIzXi2nS8mBHMaYibEOMJYTAi9pWNK2OQkGBBB4zBJOD3171_sPLhwbo8xof4zCN62jWoLVaKNaluwtUMmRzubqho9wAFK01RQtyi3pkLrpi2q4svzpu6xZWlMhjag3h1SdYaeqwbsoTCdq8G58F45yNALKNdZcJfBWa5KB1c_9zDYLRev86dwtX58ns9WoYqpaEOdMaVxFEWap5RxHacRBQCdJBnVnGhMWCamTLCUazqFRPCI8wwnQmc5xVrEw2B07G2s-ejAtbIqnIayVDX4yWRM40Qwknjw7ghqa5yzkMvGFpWyn5Jg2QuWshcse3OyNyd7wZJQ6Q9hPi-OeeXr5d50tvZ7_YX_zX4DlMCB6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34359615</pqid></control><display><type>article</type><title>Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Mejía, Alfonso I ; Moglen, Glenn E</creator><creatorcontrib>Mejía, Alfonso I ; Moglen, Glenn E</creatorcontrib><description>Urban development within a watershed can take on a wide and diverse range of spatial patterns. The terms “sprawl” and “clustered” development, for example, are frequent in the literature, spanning the spectrum of possible spatial patterns of urban development. The relationship between flood conditions and the spatial distribution of the urban development has been poorly studied, often because of limitations in streamflow data availability or the common use of lumped watershed models in urban hydrologic modeling. We study this relationship with an optimization-based approach that accounts directly for the spatial distribution of imperviousness to investigate how the urban spatial pattern will affect flood peaks and how it can be used to reduce or minimize undesirable impacts to water resources. We employ several water resources-based objective functions to perform optimizations that result in distinct spatial patterns of urbanization showing characteristics of both sprawl and clustered development, depending on the objective function used. We conclude that the approach followed here and the resulting optimized landscapes provide a helpful understanding of the important role played by the spatial form of the urban pattern when trying to minimize impacts to water resources. One objective function, crafted to approximate ecologically based imperviousness threshold policies, resulted in an optimized urbanization pattern suggesting that unintended consequences of low density sprawl may follow from such policies. This specific finding underscores the general value of our optimization-based approach for planning and managing new urban development around water resources.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)1084-0699(2009)14:4(416)</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>TECHNICAL PAPERS</subject><ispartof>Journal of hydrologic engineering, 2009-04, Vol.14 (4), p.416-424</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-cd6ac0222c8b468c3b24eeec55d4c81c016d97696b8c47e598288d059cdf40c93</citedby><cites>FETCH-LOGICAL-a349t-cd6ac0222c8b468c3b24eeec55d4c81c016d97696b8c47e598288d059cdf40c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)1084-0699(2009)14:4(416)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(2009)14:4(416)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Mejía, Alfonso I</creatorcontrib><creatorcontrib>Moglen, Glenn E</creatorcontrib><title>Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures</title><title>Journal of hydrologic engineering</title><description>Urban development within a watershed can take on a wide and diverse range of spatial patterns. The terms “sprawl” and “clustered” development, for example, are frequent in the literature, spanning the spectrum of possible spatial patterns of urban development. The relationship between flood conditions and the spatial distribution of the urban development has been poorly studied, often because of limitations in streamflow data availability or the common use of lumped watershed models in urban hydrologic modeling. We study this relationship with an optimization-based approach that accounts directly for the spatial distribution of imperviousness to investigate how the urban spatial pattern will affect flood peaks and how it can be used to reduce or minimize undesirable impacts to water resources. We employ several water resources-based objective functions to perform optimizations that result in distinct spatial patterns of urbanization showing characteristics of both sprawl and clustered development, depending on the objective function used. We conclude that the approach followed here and the resulting optimized landscapes provide a helpful understanding of the important role played by the spatial form of the urban pattern when trying to minimize impacts to water resources. One objective function, crafted to approximate ecologically based imperviousness threshold policies, resulted in an optimized urbanization pattern suggesting that unintended consequences of low density sprawl may follow from such policies. This specific finding underscores the general value of our optimization-based approach for planning and managing new urban development around water resources.</description><subject>TECHNICAL PAPERS</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhosoOKf_IaexHapJm2aJ4GHOTYXJBnPnkKZfsbNtatIO9NebMvUoOSSB5335vicIRgRfE8zIzXi2nS8mBHMaYibEOMJYTAi9pWNK2OQkGBBB4zBJOD3171_sPLhwbo8xof4zCN62jWoLVaKNaluwtUMmRzubqho9wAFK01RQtyi3pkLrpi2q4svzpu6xZWlMhjag3h1SdYaeqwbsoTCdq8G58F45yNALKNdZcJfBWa5KB1c_9zDYLRev86dwtX58ns9WoYqpaEOdMaVxFEWap5RxHacRBQCdJBnVnGhMWCamTLCUazqFRPCI8wwnQmc5xVrEw2B07G2s-ejAtbIqnIayVDX4yWRM40Qwknjw7ghqa5yzkMvGFpWyn5Jg2QuWshcse3OyNyd7wZJQ6Q9hPi-OeeXr5d50tvZ7_YX_zX4DlMCB6g</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mejía, Alfonso I</creator><creator>Moglen, Glenn E</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090401</creationdate><title>Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures</title><author>Mejía, Alfonso I ; Moglen, Glenn E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-cd6ac0222c8b468c3b24eeec55d4c81c016d97696b8c47e598288d059cdf40c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mejía, Alfonso I</creatorcontrib><creatorcontrib>Moglen, Glenn E</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mejía, Alfonso I</au><au>Moglen, Glenn E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>14</volume><issue>4</issue><spage>416</spage><epage>424</epage><pages>416-424</pages><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>Urban development within a watershed can take on a wide and diverse range of spatial patterns. The terms “sprawl” and “clustered” development, for example, are frequent in the literature, spanning the spectrum of possible spatial patterns of urban development. The relationship between flood conditions and the spatial distribution of the urban development has been poorly studied, often because of limitations in streamflow data availability or the common use of lumped watershed models in urban hydrologic modeling. We study this relationship with an optimization-based approach that accounts directly for the spatial distribution of imperviousness to investigate how the urban spatial pattern will affect flood peaks and how it can be used to reduce or minimize undesirable impacts to water resources. We employ several water resources-based objective functions to perform optimizations that result in distinct spatial patterns of urbanization showing characteristics of both sprawl and clustered development, depending on the objective function used. We conclude that the approach followed here and the resulting optimized landscapes provide a helpful understanding of the important role played by the spatial form of the urban pattern when trying to minimize impacts to water resources. One objective function, crafted to approximate ecologically based imperviousness threshold policies, resulted in an optimized urbanization pattern suggesting that unintended consequences of low density sprawl may follow from such policies. This specific finding underscores the general value of our optimization-based approach for planning and managing new urban development around water resources.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)1084-0699(2009)14:4(416)</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-0699
ispartof Journal of hydrologic engineering, 2009-04, Vol.14 (4), p.416-424
issn 1084-0699
1943-5584
language eng
recordid cdi_proquest_miscellaneous_34359615
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects TECHNICAL PAPERS
title Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Patterns%20of%20Urban%20Development%20from%20Optimization%20of%20Flood%20Peaks%20and%20Imperviousness-Based%20Measures&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Mej%C3%ADa,%20Alfonso%20I&rft.date=2009-04-01&rft.volume=14&rft.issue=4&rft.spage=416&rft.epage=424&rft.pages=416-424&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)1084-0699(2009)14:4(416)&rft_dat=%3Cproquest_cross%3E34359615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34359615&rft_id=info:pmid/&rfr_iscdi=true