Neuro-genetic algorithm for non-linear active control of structures
In a companion paper, a new non‐linear control model was presented for active control of three‐dimensional (3D) building structures including geometrical and material non‐linearities, coupling action between lateral and torsional motions, and actuator dynamics (Int. J. Numer. Meth. Engng; DOI: 10.10...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2008-08, Vol.75 (7), p.770-786 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 7 |
container_start_page | 770 |
container_title | International journal for numerical methods in engineering |
container_volume | 75 |
creator | Jiang, Xiaomo Adeli, Hojjat |
description | In a companion paper, a new non‐linear control model was presented for active control of three‐dimensional (3D) building structures including geometrical and material non‐linearities, coupling action between lateral and torsional motions, and actuator dynamics (Int. J. Numer. Meth. Engng; DOI: 10.1002/nme.2195). A dynamic fuzzy wavelet neuroemulator was presented for predicting the structural response in future time steps. In this paper, a new neuro‐genetic algorithm or controller is presented for finding the optimal control forces. The control algorithm does not need the pre‐training required in a neural network‐based controller, which improves the efficiency of the general control methodology significantly. Two 3D steel building structures, a 12‐story structure with vertical setbacks and an 8‐story structure with plan irregularity, are used to validate the neuro‐genetic control algorithm under three different seismic excitations. Numerical validations demonstrate that the new control methodology significantly reduces the displacements of buildings subjected to various seismic excitations including structures with plan and elevation irregularities. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34357221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34357221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4304-df776b4fa122a75a3865a6b6000ca0c465b5aa00db3114f09fd881317bf643ac3</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgUS5SPyELCCWwPEtTkeooCCVwgDqaJ24NhjSGOwE6L8nVatuTGc4j97hI-SEwgUFYJfNwl4wpsQOGVAYqhwYqF0y6F_DXA5Luk8OUnoHoFQCH5DR1HYx5K-2sa03GdavIfr2bZG5ELMmNHntG4sxQ9P6b5uZ0LQx1FlwWWpjZ9ou2nRE9hzWyR5v7iF5ub15Ht3lk8fx_ehqkhvBQeRzp1RRCYeUMVQSeVlILKoCAAyCEYWsJCLAvOKUCgdDNy9LyqmqXCE4Gn5Iztbdzxi-OptavfDJ2LrGxoYuaS64VIzRHp6voYkhpWid_ox-gXGpKejVSrpfSa9W6unpponJYO0iNsanrWcgi5IJ3rt87X58bZf_9vT04WbT3XifWvu79Rg_dKG4kno2Hevy6Zrz2Wysp_wPEd2ETQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34357221</pqid></control><display><type>article</type><title>Neuro-genetic algorithm for non-linear active control of structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Xiaomo ; Adeli, Hojjat</creator><creatorcontrib>Jiang, Xiaomo ; Adeli, Hojjat</creatorcontrib><description>In a companion paper, a new non‐linear control model was presented for active control of three‐dimensional (3D) building structures including geometrical and material non‐linearities, coupling action between lateral and torsional motions, and actuator dynamics (Int. J. Numer. Meth. Engng; DOI: 10.1002/nme.2195). A dynamic fuzzy wavelet neuroemulator was presented for predicting the structural response in future time steps. In this paper, a new neuro‐genetic algorithm or controller is presented for finding the optimal control forces. The control algorithm does not need the pre‐training required in a neural network‐based controller, which improves the efficiency of the general control methodology significantly. Two 3D steel building structures, a 12‐story structure with vertical setbacks and an 8‐story structure with plan irregularity, are used to validate the neuro‐genetic control algorithm under three different seismic excitations. Numerical validations demonstrate that the new control methodology significantly reduces the displacements of buildings subjected to various seismic excitations including structures with plan and elevation irregularities. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2274</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; genetic algorithm ; Geotechnics ; high-rise building ; Mathematical methods in physics ; neuroemulator ; non-linear active control ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Structure-soil interaction ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; wavelet neural network</subject><ispartof>International journal for numerical methods in engineering, 2008-08, Vol.75 (7), p.770-786</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4304-df776b4fa122a75a3865a6b6000ca0c465b5aa00db3114f09fd881317bf643ac3</citedby><cites>FETCH-LOGICAL-c4304-df776b4fa122a75a3865a6b6000ca0c465b5aa00db3114f09fd881317bf643ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2274$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2274$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20568243$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Xiaomo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><title>Neuro-genetic algorithm for non-linear active control of structures</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>In a companion paper, a new non‐linear control model was presented for active control of three‐dimensional (3D) building structures including geometrical and material non‐linearities, coupling action between lateral and torsional motions, and actuator dynamics (Int. J. Numer. Meth. Engng; DOI: 10.1002/nme.2195). A dynamic fuzzy wavelet neuroemulator was presented for predicting the structural response in future time steps. In this paper, a new neuro‐genetic algorithm or controller is presented for finding the optimal control forces. The control algorithm does not need the pre‐training required in a neural network‐based controller, which improves the efficiency of the general control methodology significantly. Two 3D steel building structures, a 12‐story structure with vertical setbacks and an 8‐story structure with plan irregularity, are used to validate the neuro‐genetic control algorithm under three different seismic excitations. Numerical validations demonstrate that the new control methodology significantly reduces the displacements of buildings subjected to various seismic excitations including structures with plan and elevation irregularities. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>genetic algorithm</subject><subject>Geotechnics</subject><subject>high-rise building</subject><subject>Mathematical methods in physics</subject><subject>neuroemulator</subject><subject>non-linear active control</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structure-soil interaction</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>wavelet neural network</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUhmELgUS5SPyELCCWwPEtTkeooCCVwgDqaJ24NhjSGOwE6L8nVatuTGc4j97hI-SEwgUFYJfNwl4wpsQOGVAYqhwYqF0y6F_DXA5Luk8OUnoHoFQCH5DR1HYx5K-2sa03GdavIfr2bZG5ELMmNHntG4sxQ9P6b5uZ0LQx1FlwWWpjZ9ou2nRE9hzWyR5v7iF5ub15Ht3lk8fx_ehqkhvBQeRzp1RRCYeUMVQSeVlILKoCAAyCEYWsJCLAvOKUCgdDNy9LyqmqXCE4Gn5Iztbdzxi-OptavfDJ2LrGxoYuaS64VIzRHp6voYkhpWid_ox-gXGpKejVSrpfSa9W6unpponJYO0iNsanrWcgi5IJ3rt87X58bZf_9vT04WbT3XifWvu79Rg_dKG4kno2Hevy6Zrz2Wysp_wPEd2ETQ</recordid><startdate>20080813</startdate><enddate>20080813</enddate><creator>Jiang, Xiaomo</creator><creator>Adeli, Hojjat</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080813</creationdate><title>Neuro-genetic algorithm for non-linear active control of structures</title><author>Jiang, Xiaomo ; Adeli, Hojjat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4304-df776b4fa122a75a3865a6b6000ca0c465b5aa00db3114f09fd881317bf643ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>genetic algorithm</topic><topic>Geotechnics</topic><topic>high-rise building</topic><topic>Mathematical methods in physics</topic><topic>neuroemulator</topic><topic>non-linear active control</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structure-soil interaction</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>wavelet neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiaomo</creatorcontrib><creatorcontrib>Adeli, Hojjat</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiaomo</au><au>Adeli, Hojjat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-genetic algorithm for non-linear active control of structures</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2008-08-13</date><risdate>2008</risdate><volume>75</volume><issue>7</issue><spage>770</spage><epage>786</epage><pages>770-786</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>In a companion paper, a new non‐linear control model was presented for active control of three‐dimensional (3D) building structures including geometrical and material non‐linearities, coupling action between lateral and torsional motions, and actuator dynamics (Int. J. Numer. Meth. Engng; DOI: 10.1002/nme.2195). A dynamic fuzzy wavelet neuroemulator was presented for predicting the structural response in future time steps. In this paper, a new neuro‐genetic algorithm or controller is presented for finding the optimal control forces. The control algorithm does not need the pre‐training required in a neural network‐based controller, which improves the efficiency of the general control methodology significantly. Two 3D steel building structures, a 12‐story structure with vertical setbacks and an 8‐story structure with plan irregularity, are used to validate the neuro‐genetic control algorithm under three different seismic excitations. Numerical validations demonstrate that the new control methodology significantly reduces the displacements of buildings subjected to various seismic excitations including structures with plan and elevation irregularities. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2274</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2008-08, Vol.75 (7), p.770-786 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_34357221 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Buildings. Public works Computational techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) genetic algorithm Geotechnics high-rise building Mathematical methods in physics neuroemulator non-linear active control Physics Solid mechanics Structural and continuum mechanics Structure-soil interaction Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) wavelet neural network |
title | Neuro-genetic algorithm for non-linear active control of structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-genetic%20algorithm%20for%20non-linear%20active%20control%20of%20structures&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Jiang,%20Xiaomo&rft.date=2008-08-13&rft.volume=75&rft.issue=7&rft.spage=770&rft.epage=786&rft.pages=770-786&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2274&rft_dat=%3Cproquest_cross%3E34357221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34357221&rft_id=info:pmid/&rfr_iscdi=true |