Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics
This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model ar...
Gespeichert in:
Veröffentlicht in: | International journal of materials research 2008-06, Vol.99 (6), p.618-625 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 6 |
container_start_page | 618 |
container_title | International journal of materials research |
container_volume | 99 |
creator | Ishmurzin, A. Gruber-Pretzler, M. Mayer, F. Wu, M. Ludwig, A. |
description | This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting. |
doi_str_mv | 10.3139/146.101682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34277081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34277081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</originalsourceid><addsrcrecordid>eNptkE9L5jAQh4Mo-Prn4ifoxT0sVDtJkyZ7E9HdBcWLnktMJ77RNqlJirzf3riveFg8zTA88zDzI-QEmjMGTJ1DK86gASHpDllRULyWnItdsgIpaM2ppPvkIKXnpuEgOroi-XYZs5vXOuH59NGaMM3Bo8_VFAYcnX-qgq1SGN3grDM6u-CrOQaDKWH6VZmwzP-o_5AX57HYUvXm8rrKa4zFt_F6KrMjsmf1mPD4sx6Sh-ur-8s_9c3d77-XFze1YS3k2gBI2SpmBgESpDLS8M5YKlDjYys4aqqYEu3AwA7YPA7c4lAG0HHbKW3YIfmx9ZZ7XxdMuZ9cMjiO2mNYUs9a2nWNhAL-3IImhpQi2n6ObtJx00PTfwTbl2D7bbAFPv206mT0aKP2xqWvDdq0klLRFU5uuTc9ZowDPsVlU5r-OSzRl7-_kSslyq_sHdmGjYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34277081</pqid></control><display><type>article</type><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><source>De Gruyter journals</source><creator>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</creator><creatorcontrib>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</creatorcontrib><description>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</description><identifier>ISSN: 1862-5282</identifier><identifier>EISSN: 2195-8556</identifier><identifier>DOI: 10.3139/146.101682</identifier><language>eng</language><publisher>Munich: De Gruyter</publisher><subject>Applied sciences ; Exact sciences and technology ; Macrosegregation ; Metals. Metallurgy ; Solidification ; Ternary ; Thermodynamics</subject><ispartof>International journal of materials research, 2008-06, Vol.99 (6), p.618-625</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</citedby><cites>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.101682/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.101682/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923,66524,68308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20482267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishmurzin, A.</creatorcontrib><creatorcontrib>Gruber-Pretzler, M.</creatorcontrib><creatorcontrib>Mayer, F.</creatorcontrib><creatorcontrib>Wu, M.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><title>International journal of materials research</title><description>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Macrosegregation</subject><subject>Metals. Metallurgy</subject><subject>Solidification</subject><subject>Ternary</subject><subject>Thermodynamics</subject><issn>1862-5282</issn><issn>2195-8556</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkE9L5jAQh4Mo-Prn4ifoxT0sVDtJkyZ7E9HdBcWLnktMJ77RNqlJirzf3riveFg8zTA88zDzI-QEmjMGTJ1DK86gASHpDllRULyWnItdsgIpaM2ppPvkIKXnpuEgOroi-XYZs5vXOuH59NGaMM3Bo8_VFAYcnX-qgq1SGN3grDM6u-CrOQaDKWH6VZmwzP-o_5AX57HYUvXm8rrKa4zFt_F6KrMjsmf1mPD4sx6Sh-ur-8s_9c3d77-XFze1YS3k2gBI2SpmBgESpDLS8M5YKlDjYys4aqqYEu3AwA7YPA7c4lAG0HHbKW3YIfmx9ZZ7XxdMuZ9cMjiO2mNYUs9a2nWNhAL-3IImhpQi2n6ObtJx00PTfwTbl2D7bbAFPv206mT0aKP2xqWvDdq0klLRFU5uuTc9ZowDPsVlU5r-OSzRl7-_kSslyq_sHdmGjYQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Ishmurzin, A.</creator><creator>Gruber-Pretzler, M.</creator><creator>Mayer, F.</creator><creator>Wu, M.</creator><creator>Ludwig, A.</creator><general>De Gruyter</general><general>Hanser</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080601</creationdate><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><author>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Macrosegregation</topic><topic>Metals. Metallurgy</topic><topic>Solidification</topic><topic>Ternary</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishmurzin, A.</creatorcontrib><creatorcontrib>Gruber-Pretzler, M.</creatorcontrib><creatorcontrib>Mayer, F.</creatorcontrib><creatorcontrib>Wu, M.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishmurzin, A.</au><au>Gruber-Pretzler, M.</au><au>Mayer, F.</au><au>Wu, M.</au><au>Ludwig, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</atitle><jtitle>International journal of materials research</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>99</volume><issue>6</issue><spage>618</spage><epage>625</epage><pages>618-625</pages><issn>1862-5282</issn><eissn>2195-8556</eissn><abstract>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</abstract><cop>Munich</cop><pub>De Gruyter</pub><doi>10.3139/146.101682</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-5282 |
ispartof | International journal of materials research, 2008-06, Vol.99 (6), p.618-625 |
issn | 1862-5282 2195-8556 |
language | eng |
recordid | cdi_proquest_miscellaneous_34277081 |
source | De Gruyter journals |
subjects | Applied sciences Exact sciences and technology Macrosegregation Metals. Metallurgy Solidification Ternary Thermodynamics |
title | Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphase/multicomponent%20modeling%20of%20solidification%20processes:%20coupling%20solidification%20kinetics%20with%20thermodynamics&rft.jtitle=International%20journal%20of%20materials%20research&rft.au=Ishmurzin,%20A.&rft.date=2008-06-01&rft.volume=99&rft.issue=6&rft.spage=618&rft.epage=625&rft.pages=618-625&rft.issn=1862-5282&rft.eissn=2195-8556&rft_id=info:doi/10.3139/146.101682&rft_dat=%3Cproquest_cross%3E34277081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34277081&rft_id=info:pmid/&rfr_iscdi=true |