Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics

This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of materials research 2008-06, Vol.99 (6), p.618-625
Hauptverfasser: Ishmurzin, A., Gruber-Pretzler, M., Mayer, F., Wu, M., Ludwig, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 6
container_start_page 618
container_title International journal of materials research
container_volume 99
creator Ishmurzin, A.
Gruber-Pretzler, M.
Mayer, F.
Wu, M.
Ludwig, A.
description This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.
doi_str_mv 10.3139/146.101682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34277081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34277081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</originalsourceid><addsrcrecordid>eNptkE9L5jAQh4Mo-Prn4ifoxT0sVDtJkyZ7E9HdBcWLnktMJ77RNqlJirzf3riveFg8zTA88zDzI-QEmjMGTJ1DK86gASHpDllRULyWnItdsgIpaM2ppPvkIKXnpuEgOroi-XYZs5vXOuH59NGaMM3Bo8_VFAYcnX-qgq1SGN3grDM6u-CrOQaDKWH6VZmwzP-o_5AX57HYUvXm8rrKa4zFt_F6KrMjsmf1mPD4sx6Sh-ur-8s_9c3d77-XFze1YS3k2gBI2SpmBgESpDLS8M5YKlDjYys4aqqYEu3AwA7YPA7c4lAG0HHbKW3YIfmx9ZZ7XxdMuZ9cMjiO2mNYUs9a2nWNhAL-3IImhpQi2n6ObtJx00PTfwTbl2D7bbAFPv206mT0aKP2xqWvDdq0klLRFU5uuTc9ZowDPsVlU5r-OSzRl7-_kSslyq_sHdmGjYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34277081</pqid></control><display><type>article</type><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><source>De Gruyter journals</source><creator>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</creator><creatorcontrib>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</creatorcontrib><description>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</description><identifier>ISSN: 1862-5282</identifier><identifier>EISSN: 2195-8556</identifier><identifier>DOI: 10.3139/146.101682</identifier><language>eng</language><publisher>Munich: De Gruyter</publisher><subject>Applied sciences ; Exact sciences and technology ; Macrosegregation ; Metals. Metallurgy ; Solidification ; Ternary ; Thermodynamics</subject><ispartof>International journal of materials research, 2008-06, Vol.99 (6), p.618-625</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</citedby><cites>FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.101682/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.101682/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923,66524,68308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20482267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishmurzin, A.</creatorcontrib><creatorcontrib>Gruber-Pretzler, M.</creatorcontrib><creatorcontrib>Mayer, F.</creatorcontrib><creatorcontrib>Wu, M.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><title>International journal of materials research</title><description>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Macrosegregation</subject><subject>Metals. Metallurgy</subject><subject>Solidification</subject><subject>Ternary</subject><subject>Thermodynamics</subject><issn>1862-5282</issn><issn>2195-8556</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkE9L5jAQh4Mo-Prn4ifoxT0sVDtJkyZ7E9HdBcWLnktMJ77RNqlJirzf3riveFg8zTA88zDzI-QEmjMGTJ1DK86gASHpDllRULyWnItdsgIpaM2ppPvkIKXnpuEgOroi-XYZs5vXOuH59NGaMM3Bo8_VFAYcnX-qgq1SGN3grDM6u-CrOQaDKWH6VZmwzP-o_5AX57HYUvXm8rrKa4zFt_F6KrMjsmf1mPD4sx6Sh-ur-8s_9c3d77-XFze1YS3k2gBI2SpmBgESpDLS8M5YKlDjYys4aqqYEu3AwA7YPA7c4lAG0HHbKW3YIfmx9ZZ7XxdMuZ9cMjiO2mNYUs9a2nWNhAL-3IImhpQi2n6ObtJx00PTfwTbl2D7bbAFPv206mT0aKP2xqWvDdq0klLRFU5uuTc9ZowDPsVlU5r-OSzRl7-_kSslyq_sHdmGjYQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Ishmurzin, A.</creator><creator>Gruber-Pretzler, M.</creator><creator>Mayer, F.</creator><creator>Wu, M.</creator><creator>Ludwig, A.</creator><general>De Gruyter</general><general>Hanser</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080601</creationdate><title>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</title><author>Ishmurzin, A. ; Gruber-Pretzler, M. ; Mayer, F. ; Wu, M. ; Ludwig, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c1188493cd618189c8c57cf26eaeb465ea293964d31fde0bd5fed396175f79ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Macrosegregation</topic><topic>Metals. Metallurgy</topic><topic>Solidification</topic><topic>Ternary</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishmurzin, A.</creatorcontrib><creatorcontrib>Gruber-Pretzler, M.</creatorcontrib><creatorcontrib>Mayer, F.</creatorcontrib><creatorcontrib>Wu, M.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishmurzin, A.</au><au>Gruber-Pretzler, M.</au><au>Mayer, F.</au><au>Wu, M.</au><au>Ludwig, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics</atitle><jtitle>International journal of materials research</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>99</volume><issue>6</issue><spage>618</spage><epage>625</epage><pages>618-625</pages><issn>1862-5282</issn><eissn>2195-8556</eissn><abstract>This paper is an extension and improvement of the previous work of the authors. It presents further development of a coupling method between a multiphase Eulerian solidification model and the thermodynamics of multicomponental alloys. The transport equations of the multiphase solidification model are closed by the interphase transfer/exchange terms. The derivation of these terms is based on the diffusion-controlled solidification kinetics and thermodynamics. Direct online coupling of a computational fluid dynamics solver with a thermodynamic software package is time-consuming, therefore a way to access thermodynamic data by means of the tabulation and interpolation technique (In-Situ Adaptive Tabulation) is suggested. The coupling procedure is described and tested with a 0-D solidification benchmark case. Additionally, the suggested coupling method is used to simulate a casting process of a CuSn6P0.5 round strand, which demonstrated the application potential of the coupling idea. The predicted macrosegregations of Sn and P for this casting process shows the same distribution pattern as observed in practice, namely positive segregation in the vicinity of the wall region and negative one in the center of the casting.</abstract><cop>Munich</cop><pub>De Gruyter</pub><doi>10.3139/146.101682</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-5282
ispartof International journal of materials research, 2008-06, Vol.99 (6), p.618-625
issn 1862-5282
2195-8556
language eng
recordid cdi_proquest_miscellaneous_34277081
source De Gruyter journals
subjects Applied sciences
Exact sciences and technology
Macrosegregation
Metals. Metallurgy
Solidification
Ternary
Thermodynamics
title Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphase/multicomponent%20modeling%20of%20solidification%20processes:%20coupling%20solidification%20kinetics%20with%20thermodynamics&rft.jtitle=International%20journal%20of%20materials%20research&rft.au=Ishmurzin,%20A.&rft.date=2008-06-01&rft.volume=99&rft.issue=6&rft.spage=618&rft.epage=625&rft.pages=618-625&rft.issn=1862-5282&rft.eissn=2195-8556&rft_id=info:doi/10.3139/146.101682&rft_dat=%3Cproquest_cross%3E34277081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34277081&rft_id=info:pmid/&rfr_iscdi=true